did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9781848212930

Electromagnetic Reverberation Chambers

by ; ;
  • ISBN13:

    9781848212930

  • ISBN10:

    1848212933

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2011-09-13
  • Publisher: Wiley-ISTE

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $262.34 Save up to $78.70
  • Rent Book $183.64
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-4 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?

Summary

Dedicated to reverberation chambers, this book presents the physical principles of these test systems in a very progressive manner. The detailed panorama of parameters governing their operations are illustrated with various applications, such as radiated immunity, emissivity, and shielding efficiency experiments. In addition, the reader is provided with some elements of electromagnetic theory as well as statistics. These elements highlight the basic operational rules of reverberation chambers, including calibration procedures. The situation of reverberation chamber in regards to other test systems (such as TEM cells and anechoic chambers) is also discussed.

Author Biography

Bernard Démoulin is a professor at the Institute of Electronics, Micro, and Nanotechnologies (IEMN) in Lille, France.

Philippe Besnier is a researcher at the National Center for Scientific Research (CNRS) in France.

Table of Contents

Preface xiii

Foreword xv
Paolo CORONA

Introduction xix

Chapter 1. Position of the Reverberation Chambers in Common Electromagnetic Tests 1

1.1. Introduction 1

1.2. Electromagnetic fields and plane waves 2

1.3. Electromagnetic tests in confined areas 13

1.4. Discussion 26

1.5. Bibliography 28

Chapter 2. Main Physical Features of Electromagnetic Cavities 29

2.1. Introduction 29

2.2. Reduction of the modes in a 1D cavity 30

2.3. Physical features of an empty rectangular cavity 44

2.4. The 3D cavity operating in stirred modes 69

2.5. Discussion 77

2.6. Bibliography 80

Chapter 3. Statistical Behavior of Stirred Waves in an Oversized Cavity 83

3.1. Introduction 83

3.2. Descriptions of the ideal random electromagnetic field 84

3.3. Simulation of the properties of an ideal random field 93

3.4. Contribution of the statistical tests 104

3.5. Balance of power in a reverberation chamber 121

3.6. Discussion 130

3.7. Bibliography 132

Chapter 4. Impact of the Physical and Technological Parameters of a Reverberation Chamber 135

4.1. Introduction 135

4.2. Main parameters for reverberation chamber design 136

4.3. The usual techniques of mode stirring 153

4.4. The characterization of reverberation chambers 164

4.5. Discussion 188

4.6. Bibliography 190

Chapter 5. Radiated Immunity Tests in a Reverberation Chamber 193

5.1. Introduction 193

5.2. The calibration process 194

5.3. Examples of calibration results 206

5.4. Implementing of the immunity test for a piece of equipment 210

5.5. Immunity test in reverberation and anechoic chambers 220

5.6. Rectangular components of the electric field and the total electric field 226

5.7. Discussion 228

5.8. Bibliography 230

Chapter 6. Emissivity Tests in Reverberation Chambers 233

6.1. Introduction 233

6.2. A few notions on electromagnetic radiation and antennas 234

6.3. Measurement of the total radiated power in free space 249

6.4. Measurement of the unintentional emission of a device under test 252

6.5. Measurement examples of the total radiated power 262

6.6. Total radiated power and radiated emissivity 269

6.7. Measurement of the efficiency and of the diversity gain of the antennas 272

6.8. Discussion 275

6.9. Bibliography 276

Chapter 7. Measurement of the Shielding Effectiveness 279

7.1. Introduction 279

7.2. Definitions of the shielding effectiveness 280

7.3. Measurement of the effectiveness of shielded cables and connectors in reverberation chambers 287

7.4. Measurement of the attenuation of the shielded enclosures 302

7.5. Measurement of the shielding effectiveness of the materials 307

7.6. Discussion 316

7.7. Bibliography 318

Chapter 8. Mode Stirring Reverberation Chamber: A Research Tool 321

8.1. Introduction 321

8.2. A non-ideal random electromagnetic field 324

8.3. Studying the correlation of a set of measurements 336

8.4. Quantization of the scattered and coherent fields in a reverberation chamber 349

8.5. Discussion 356

8.6. Bibliography 358

APPENDICES 361

Appendix 1. Notion of Probability 363

A1.1. The random variable concept 363

A1.2. Probability concept from intuition 363

A1.3. Probability density function (pdf) 364

A1.4. Computation of moments 365

A1.5. Centered and normalized variables 366

A1.6. Computation of the variance and standard deviation 367

A1.7. Probability distributions 367

A1.8. The cumulative distribution function (cdf) 369

A1.9. The ergodism notion 369

A1.10. Features of the random stationary variables 372

A1.11. The characteristic function 373

A1.12. Summary of the main probability distributions 375

A1.13. Tables of numerical values of the normal distribution integrals 378

A1.14. Bibliography 379

Appendix 2. Formulas of the Quality Factor of a Rectangular Cavity 381

A2.1. Quality factor of the TMm n p mode 381

A2.2. Calculation of the average Q quality factor 382

A2.3. Bibliography 384

Appendix 3. Total Field and Total Power Variables 385

A3.1. Total field variables 385

A3.2. χ2 variable attached to the total field 386

A3.3. Total field probability density function 386

A3.4. Calculation of the mean of the total field 387

A3.5. The pdf of the total power 388

A3.6. Calculation of the mean total powers 389

Appendix 4. Calculation of the Variances of υφ, υη, υθ 391

A4.1. Variance of the υφ and υη variables 391

A4.2. Variance of the υθ variable 392

Appendix 5. Electric Dipole Formulas 395

A5.1. Complete formulas of the electric dipole 395

A5.2. Near-field formulas of the electric dipole 397

A5.3. Far-field formulas of the electric dipole 397

A5.4. Bibliography 398

Index 399

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program