did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780824723613

Handbook of Automotive Power Electronics and Motor Drives

by ;
  • ISBN13:

    9780824723613

  • ISBN10:

    0824723619

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2005-05-25
  • Publisher: CRC Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $240.00 Save up to $80.40
  • Rent Book $159.60
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-5 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?

Summary

Covering applications in conventional, hybrid-electric, and electric vehicles, this book provides a comprehensive reference for automotive electrical systems. This authoritative handbook features contributions from an outstanding international panel of experts from industry and academia, highlighting existing and emerging technologies. Divided into five parts, it offers an overview of automotive power systems, discusses semiconductor devices, sensors, and other components, explains different power electronic converters, examines electric machines and associated drives, and details various advanced electrical loads as well as battery technology for automobile applications.

Table of Contents

PART I. Automotive Power Systems 1(114)
1. Conventional Cars
3(18)
Roberto Giral-Castillón, Luis Martinez-Salamero, and Javier Maixé-Altés
1.1 Introduction
3(1)
1.2 Evolution of the Distribution Electrical System
3(3)
1.2.1 Control Strategy and Wiring Topology
5(1)
1.2.2 Power Bus Topology
5(1)
1.2.3 Components
6(1)
1.3 The Conventional System of Electrical Distribution in Automobiles
6(1)
1.3.1 Battery and Its Charging System
6(1)
1.3.2 Motor Starter System
6(1)
1.3.3 Management System
6(1)
1.4 Wiring System
6(7)
1.4.1 Fuses
8(1)
1.4.1.1 Polymeric Positive Temperature Coefficient Devices
9(1)
1.4.1.2 Smart Power Switches
11(1)
1.4.2 Behavior Comparison among the Different Protection Devices
12(1)
1.5 Load Control: Automotive Control Network Protocols
13(2)
1.5.1 Controller Area Network (CAN)
14(1)
1.5.2 Local Interconnect Network (LIN)
14(1)
1.5.3 Bytefiight
15(1)
1.5.4 Time Triggered Protocol (TTP/C)
15(1)
1.6 New Architectures
15(1)
1.6.1 Electric Security
15(1)
1.6.2 Voltage Effect on the Components
16(1)
1.7 Alternative Architectures
16(2)
1.7.1 High Frequency AC Bus System
16(1)
1.7.2 Dual-Voltage DC Bus
17(1)
References
18(3)
2. Hybrid Electric Vehicles
21(16)
John M. Miller
2.1 Parallel Configuration
26(3)
2.2 Series Configuration
29(2)
2.3 Combination Architectures
31(2)
2.4 Grid Connected Hybrids
33(2)
References
35(2)
3. Hybrid Drivetrains
37(18)
M. Ehsani and Yimin Gao
3.1 Concept of Hybrid Vehicle Drivetrain
37(1)
3.2 Series Hybrid Drivetrain
38(2)
3.3 Parallel Hybrid Drivetrains
40(8)
3.3.1 Parallel Hybrid Drivetrains with Torque Coupling
40(1)
3.3.1.1 Torque Coupler
40(1)
3.3.1.2 Drivetrain Configuration and Operating Characteristics
41(5)
3.3.2 Parallel Hybrid Drivetrain with Speed Coupling
46(1)
3.3.2.1 Speed Coupler
46(1)
3.3.2.2 Drivetrain Configurations and Operating Characteristics
47(1)
3.4 Drivetrains with Selectable Torque Coupling and Speed Coupling
48(2)
3.5 Parallel-Series Hybrid Drivetrain with Torque Coupling and Speed Coupling
50(1)
3.6 Fuel Cell-Powered Hybrid Drivetrain
50(2)
References
52(3)
4. Electric Vehicles
55(42)
Ramesh C. Bansal
4.1 Introduction
55(1)
4.2 Hybrid Electric Vehicles
56(1)
4.3 Main Components of an EV
57(1)
4.3.1 Motors
57(1)
4.4 Main Safety Components in an EV
58(1)
4.5 Instrumentation
59(1)
4.6 Main Auxiliaries in an EV
60(3)
4.7 Types of Power Storage Used in EVs
63(5)
4.7.1 Batteries
63(1)
4.7.2 Types of Batteries Available Today
64(3)
4.7.3 Flywheels
67(1)
4.7.4 Ultracapacitors
67(1)
4.8 Emissions Performance
68(1)
4.9 Solar Cars
69(1)
4.10 Fuel Cell Cars
69(3)
4.10.1 Introduction
69(2)
4.10.2 Fuel Cell Cars
71(1)
Bibliographical Survey on Electric Vehicles
72(1)
References
73(24)
5. Optimal Power Management and Distribution in Automotive Systems
97(18)
Zheng John Shen, X. Chen, A. Masrur, V.K. Garg, and A. Soltis
5.1 Introduction
97(2)
5.2 Automotive Power/Energy Management and Distribution Architecture
99(2)
5.2.1 Power Generation
99(1)
5.2.2 Energy Storage
100(1)
5.2.3 Power Bus
100(1)
5.2.4 Electrical Load
101(1)
5.2.5 Power Electronics
101(1)
5.2.6 PMC
101(1)
5.3 Optimization-Based Power Management System Strategy
101(3)
5.3.1 Dynamic Resource Allocation
103(1)
5.3.2 Practical Constraints of Vehicle Components
103(1)
5.3.3 Uninterruptible Power Availability
103(1)
5.3.4 Power Quality
103(1)
5.3.5 System Stability
104(1)
5.3.6 Fault Diagnosis and Prognosis
104(1)
5.4 Case Study: Game-Theoretic Optimal Hybrid Electric Vehicle Management and Control Strategy
104(8)
5.4.1 System Dynamics
105(1)
5.4.2 Strategy Design
106(1)
5.4.3 Game-Theoretic Approach
107(3)
5.4.4 Simulation Results
110(2)
5.5 Summary
112(1)
References
112(3)
PART II. Automotive Semiconductor Devices, Components, and Sensors 115(114)
6. Automotive Power Semiconductor Devices
117(42)
Zheng John Shen
6.1 Introduction
117(3)
6.2 Diodes: The Rectification, Freewheeling, and Clamping Devices
120(5)
6.2.1 Rectifier Diodes
121(1)
6.2.2 Freewheeling Diodes
121(3)
6.2.3 Zener Diodes
124(1)
6.2.4 Schottky Diode
125(1)
6.3 Power MOSFETs: The Low-Voltage Load Drivers
125(14)
6.3.1 MOSFET Basics
127(2)
6.3.2 MOSFET Characteristics
129(10)
6.4 IGBTs: The High-Voltage Power Switches
139(9)
6.4.1 IGBT Basics
141(5)
6.4.2 IGBT Power Modules
146(1)
6.4.3 Ignition IGBT
147(1)
6.5 Power Integrated Circuits and Smart Power Devices
148(2)
6.6 Emerging Device Technologies: Super-Junction and SiC Devices
150(4)
6.7 Power Losses and Thermal Management
154(2)
6.8 Summary
156(1)
References
156(3)
7. Ultracapacitors
159(30)
John M. Miller
7.1 Theory of Electronic Double Layer Capacitance
161(7)
7.2 Model and Cell Balancing
168(6)
7.3 Sizing Criteria
174(3)
7.4 Converter Interface
177(5)
7.5 Ultracapacitors in Combination with Batteries
182(5)
References
187(2)
8. Flywheels
189(6)
John M. Miller
8.1 Flywheel Theory
189(3)
8.2 Flywheel Applications in Hybrid Vehicles
192(1)
8.3 Energy Storage System Outlook
193(1)
References
194(1)
9. ESD Protection for Automotive Electronics
195(18)
Albert Z.H. Wang
9.1 Introduction
195(1)
9.2 ESD Failures and ESD Test Models
196(5)
9.3 On-Chip ESD Protection
201(10)
References
211(2)
10. Sensors
213(1)
Mario Marian Canteli
10.1 Introduction
213(1)
10.2 Architecture of Electronic Control Units
214(4)
10.3 Voltage and Current Measurement
218(3)
10.4 Temperature
221(1)
10.5 Acceleration
222(1)
10.6 Pressure
223(1)
10.7 Velocity, Position, and Displacement
223(1)
10.8 Other Sensors
224(2)
10.9 Reliability Constraints in Automotive Environment
226(1)
10.10 Conclusions
226(1)
References
227(2)
PART III. Automotive Power Electronic Converters 229(1)
11. DC-DC Converters
231(140)
James P. Johnson
11.1 Why DC-DC Converters?
231(2)
11.2 DC-DC Converter Basics
233(1)
11.3 DC-DC Converter Types
233(1)
11.4 Buck, Boost, and Buck-Boost Converter Commonalities
234(3)
11.5 The Buck Converter
237(2)
11.6 The Boost Converter
239(1)
11.7 The Buck-Boost Converter
240(1)
11.8 Isolated Inverter Driven Converters
241(1)
11.9 Push-Pull Converter
242(1)
11.10 Half-Bridge
243(1)
11.11 Full-Bridge
244(1)
11.12 Other Converter Types
244(1)
11.13 Control
245(2)
11.14 Essential Converter Circuits
247(3)
11.15 Important Points to Consider
250(1)
11.16 Simulation vs. Analytical Methods
251(1)
11.17 Loss Calculations
251(1)
11.18 Power Device Selections
251(1)
11.19 EMI
252(1)
11.20 Other Practical Converter Development Considerations
252(1)
References
253(2)
12. AC-DC Rectifiers
255(1)
Byoung-Kuk Lee and Chung-Yean Won
12.1 Diode AC-DC Rectifier
255(9)
12.1.1 Main Characteristics and Circuit Configuration
255(1)
12.1.2 Analysis of Three-Phase Full-Bridge Diode Rectifier
255(1)
12.1.2.1 Circuit without Input Inductors and DC-Link Capacitor
255(1)
12.1.2.2 Circuit with Input Inductors and DC-Link Capacitor
256(1)
12.1.2.3 Commutation Analysis Considering Effect of the Input Inductance
257(2)
12.1.3 Analysis of Input Phase Current and Output Current of Diode Rectifier
259(1)
12.1.4 Calculation of DC-Link Power
259(1)
12.1.5 Calculations of DC-Link Capacitor According to Various Load Conditions
260(1)
12.1.5.1 Case of Continuous Full Load Condition
260(1)
12.1.5.2 Case of Overload Condition
261(1)
12.1.5.3 Case of Motor Accelerating Condition
261(2)
12.1.6 Design of Dynamic Breaking Unit
263(1)
12.1.6.1 Design Procedure of Dynamic Breaking Resistor
263(1)
12.2 Thyristor AC-DC Rectifier
264(7)
12.2.1 Topology and Operation Modes
264(1)
12.2.2 Fire Angle Control Scheme
264(1)
12.2.2.1 Linear Fire Angle Control Scheme
265(1)
12.2.2.2 Cosine Wave Crossing Scheme
267(1)
12.2.2.3 PLL Scheme
267(1)
12.2.3 Analysis of Three-Phase Full-Bridge Thyristor Rectifier
268(1)
12.2.3.1 Equivalent Circuit and Output Voltage
268(1)
12.2.3.2 Influence of Input Inductance
268(1)
12.2.3.3 Selection of Input Inductance
271(1)
References
271(2)
13. Unbalanced Operation of Three-Phase Boost Type Rectifiers
273(1)
Ana V. Stankovic
13.1 System Description and Principles of Operation
274(1)
13.2 Analysis of the PWM Boost Type Rectifier under Unbalanced Operating Conditions
275(4)
13.2.1 Harmonic Reduction in the PWM Boost Type Rectifier under Unbalanced Operating Conditions
278(1)
13.3 Control Methods for Input/Output Harmonic Elimination of the PWM Boost Type Rectifiers under Unbalanced Operating Conditions
279(14)
13.3.1 Control Method for Input/Output Harmonic Elimination under Unbalanced Input Voltages and Balanced Input Impedances
279(1)
13.3.1.1 Theoretical Approach
279(1)
13.3.1.2 Control Method
282(1)
13.3.1.3 The Physical Meaning of the Proposed Solution in d-q Stationary Frame
283(4)
13.3.2 Control Method for Input/Output Harmonic Elimination of the PWM Boost Type Rectifier under Unbalanced Input Voltages and Unbalanced Input Impedances
287(1)
Derivation
287(1)
13.3.2.1 Control Method
291(2)
13.3 Conclusion
293(1)
References
294(1)
14. DC/AC Inverters
295(1)
Mohan Aware
14.1 DC-to-AC Conversion
295(3)
14.2 Types of Inverters
298(1)
14.3 Voltage Source Inverters
299(9)
14.3.1 Single-Phase Inverters
300(1)
14.3.1.1 Half-Bridge Inverters
300(1)
14.3.1.2 Full-Bridge Inverter
301(3)
14.3.2 Three-Phase Inverters
304(1)
14.3.2.1 Six-Step Operation
304(1)
14.3.2.2 Voltage and Frequency Control
309(1)
14.3.2.3 Motoring and Regeneration Mode
308(1)
14.4 Current Source Inverters
308(2)
14.5 Control Techniques
310(11)
14.5.1 Voltage Control Technique
310(1)
14.5.1.1 Sinusoidal PWM (SPWM) Technique
311(1)
14.5.1.2 Modulating Function PWM Techniques
312(1)
14.5.1.3 Voltage Space-Vector PWM Techniques
313(1)
14.5.1.4 Programmed PWM Techniques
317(1)
14.5.2 Current Control Technique
318(1)
14.5.2.1 Hysteresis Current Control
318(1)
14.5.2.2 Ramp-Comparison Current Control
319(1)
14.5.2.3 Predictive Current Control
320(1)
14.5.2.4 Linear Current Control
321(1)
14.6 Multilevel Inverters
321(4)
14.7 Hard Switching Effects
325(1)
14.7.1 Switching Loss
325(1)
14.7.2 Device Stress
325(1)
14.7.3 EMI Problems
325(1)
14.7.4 Effect on Insulation
325(1)
14.7.5 Machine Bearing Current
325(1)
14.7.6 Machine Terminal over Voltage
326(1)
14.8 Resonant Inverters
326(12)
14.8.1 Soft-Switching Principle
326(1)
14.8.2 Resonant Link DC Converter (RLDC)
327(11)
14.9 Auxiliary Automotive Motors Control
338
14.9.1 Commutator Motors
329(1)
14.9.2 Switched Field Motors
330(1)
References
331(2)
15. AC/AC Converters
333(1)
Mehrdad Kazerani
15.1 Introduction
333(1)
15.2 AC/AC Converter Topologies
334(11)
15.2.1 Indirect AC/AC Converter
334(2)
15.2.2 Direct AC/AC Converter
336(1)
15.2.2.1 Naturally Commutated Cycloconverter (NCC)
336(1)
15.2.2.2 Forced-Commutated Cycloconverter (Matrix Converter)
339(6)
15.3 Summary
345(1)
References
346(1)
16. Power Electronics and Control for Hybrid and Fuel Cell Vehicles
347(1)
Kaushik Rajashekara
16.1 Introduction
347(1)
16.2 Hybrid Electric Vehicles
347(7)
16.2.1 Series Hybrid Vehicle Propulsion System
348(1)
16.2.2 Parallel Hybrid Vehicle Propulsion System
349(1)
16.2.2.1 Toyota Prius
350(1)
16.2.2.2 Crankshaft-Mounted Integrated Starter-Generator System
352(1)
16.2.2.3 Side-Mounted Integrated Starter-Generator
353(1)
16.3 Fuel Cell Vehicles
354(5)
16.3.1 Fuel Cell Vehicle Propulsion System
355(3)
16.3.2 Fuel Cell Vehicle Propulsion System Considerations
358(1)
16.4 Power Electronics Requirements
359(1)
16.5 Propulsion Motor Control Strategies
360(4)
16.5.1 Slip Frequency Control
362(1)
16.5.2 Vector Control of Propulsion Motor
362(1)
16.5.3 Sensorless Operation
363(1)
16.6 APU Control System in Series Hybrid Vehicles
364(2)
16.7 Fuel Cell for APU Applications
366(3)
References
369(2)
PART IV. Automotive Motor Drives 371(1)
17. Brushed-DC Electric Machinery for Automotive Applications
373(182)
Babak Fahimi
17.1 Fundamentals of Operation
374(9)
17.1.1 Introduction
374(3)
17.1.2 Torque Production in Brushed DC-Motor Drives
377(2)
17.1.3 Impact of Temperature on Performance of a BLDC Drive
379(4)
17.2 Series Connected DC-Motor Drives
383(4)
18. Induction Motor Drives
387(1)
Khaled Nigim
18.1 Introduction
387(1)
18.2 Torque and Speed Control of Induction Motor
388(1)
18.3 Basics of Power Electronics Control in Induction Motors
389(1)
18.4 Induction Motor VSD Operating Modes
390(3)
18.5 Fundamentals of Scalar and Vector Control for Induction Motors
393(6)
18.5.1 Scalar Control
393(1)
18.5.1.1 Open Loop Scalar Control
393(1)
18.5.1.2 Closed Loop Scalar Control
393(1)
18.5.2 Fundamentals of Field-Oriented Control (Vector Control) in Induction Motors
394(1)
18.5.2.1 Field-Oriented Control
394(1)
18.5.2.2 Direct Torque Control
397(2)
18.6 Induction Motor Drives for Electric Vehicles
399(2)
18.7 Conclusion
401(1)
References
402(1)
Appendix: Induction Motor Model in the Stationary Frame
403(2)
19. DSP-Based Implementation of Vector Control of Induction Motor Drives
405(1)
Hossein Salehfar
19.1 Introduction
405(1)
19.2 Space Vector Control
405(5)
19.3 Experimental Results
410(3)
19.4 Conclusions
413(1)
References
413(2)
20. Switched Reluctance Motor Drives
415(1)
Babak Fahimi and Chris Edrington
20.1 Introduction
415(1)
20.2 Historical Background
416(1)
20.3 Fundamentals of Operation
417(7)
20.4 Fundamentals of Control in SRM Drives
424(6)
20.4.1 Open Loop Control Strategy for Torque
425(1)
20.4.1.1 Detection of the Initial Rotor Position
426(1)
20.4.1.2 Computation of the Commutation Thresholds
427(1)
20.4.1.3 Monitoring of the Rotor Position and Selection of the Active Phases
428(1)
20.4.1.4 A Control Strategy for Regulation of the Phase Current at Low Speeds
429(1)
20.5 Closed Loop Torque Control of the SRM Drive
430(3)
20.6 Closed Loop Speed Control of the SRM Drive
433(1)
20.7 Industrial Applications: Vehicular Coolant System
434(2)
References
436(1)
21. Noise and Vibration in SRMs
437(1)
William Cai and Pragasen Pillay
21.1 Introduction
437(1)
21.2 Numerical Models of SRM Stator Modal Analysis
438(1)
21.3 Finite Element Results of the Stator Modal Analysis
438(2)
21.4 Design Selection of Low Vibration SRMs
440(5)
21.5 The Effects of a Smooth Frame on the Resonant Frequencies
445(2)
21.6 Conclusions
447(1)
References
447(2)
22. Modeling and Parameter Identification of Electric Machines
449(1)
Ali Keyhani, Wenzhe Lu, and Bogdan Proca
Nomenclature
449(1)
22.1 Introduction
450(1)
22.2 Case Study: The Effects of Noise on Frequency-Domain Parameter Estimation of Synchronous Machine
450(10)
22.2.1 Problem Description
450(1)
22.2.2 Parameters Estimation Technique
451(1)
22.3.2.1 Estimation of D-Axis Parameters from the Time Constants
451(1)
22.3.2.2 Estimation of Q-Axis Parameters
453(1)
22.2.3 Study Process
453(1)
22.2.4 Analysis of Results
454(1)
22.2.4.1 D-Axis Parameter Estimation
454(5)
22.2.5 Conclusions
459(1)
22.3 Maximum Likelihood Estimation of Solid-Rotor Synchronous Machine Parameters
460(8)
22.3.1 Introduction
460(1)
22.3.2 Standstill Synchronous Machine Model for Time-Domain Parameter Estimation
460(1)
22.3.2.1 D-Axis Model
460(1)
22.3.2.2 Q-Axis Model
461(1)
22.3.3 Effect of Noise on the Process and the Measurement
461(1)
22.3.4 Maximum Likelihood Parameter Estimation
462(2)
22.3.5 Estimation Procedure Using SSFR Test Data
464(1)
22.3.6 Results
465(3)
22.4 Modeling and Parameter Identification of Induction Machines
468(22)
22.4.1 Model Identification
469(3)
22.4.2 Parameter Estimation
472(1)
22.4.2.1 Estimation of Stator Resistance
473(1)
22.4.2.2 Estimation of Ll, Lm, and Rr
474(2)
22.4.3 Sensitivity Analysis
476(1)
Observation
478(1)
22.4.4 Parameter Mapping to Operating Conditions
478(1)
22.4.4.1 Magnetizing Inductance, Lm
479(1)
22.4.4.2 Leakage Inductance, Ll
480(1)
22.4.4.3 Rotor Resistance, Rr
480(3)
22.4.5 Core Loss Estimation
483(1)
22.4.5.1 Calculation of Rotor Losses at Frequencies of Interest
483(1)
22.4.5.2 Calculation of Friction and Windage Losses Using ANN
483(1)
22.4.5.3 Calculation of Core Losses
485(1)
22.4.5.4 Calculation of Core Resistance
486(1)
22.4.6 Model Validation
486(1)
22.4.6.1 Steady-State Power Input
486(1)
22.4.6.2 Dynamic
486(1)
22.4.7 Conclusions
487(3)
22.5 Modeling and Parameter Identification of Switched Reluctance Machines
490(13)
22.5.1 Introduction
490(1)
22.5.2 Inductance Model of SRM at Standstill
491(1)
22.5.2.1 Three-Term Inductance Model
491(1)
22.5.2.2 Four-Term Inductance Model
492(1)
22.5.2.3 Five-Term Inductance Model
493(1)
22.5.2.4 Voltages and Torque Computation
494(1)
22.5.3 Parameter Identification from Standstill Test Data
494(1)
22.5.3.1 Standstill Test Configuration
494(1)
22.5.3.2 Standstill Test Results
495(2)
22.5.4 Inductance Model of SRM for On-Line Operation
497(2)
22.5.5 Two-Layer Recurrent Neural Network for Damper Current Estimation
499(1)
22.5.5.1 Structure of Two-Layer Recurrent Neural Network
499(1)
22.5.5.2 Training of Neural Network
501(1)
22.5.6 Estimation Results and Model Validation
501(1)
22.5.7 Conclusions
501(2)
References
503(5)
Appendix A
508(2)
Appendix B
510(5)
23. Brushless DC Drives
515(1)
James P. Johnson
23.1 BLDC Fundamentals
515(2)
23.2 Control Principles and Strategies
517(2)
23.3 Torque Production
519(2)
23.4 Advantages and Disadvantages
521(2)
23.5 Torque Ripple
523(2)
23.6 Design Considerations
525(1)
23.7 Finite Element Analysis and Design Considerations for BLDC
525(1)
23.8 Permanent Magnets
526(2)
23.9 BLDC Simulation Model
528(7)
23.10 Sensorless
535(1)
References
536(1)
24. Testing of Electric Motors and Controllers for Electric and Hybrid Electric Vehicles
537(1)
Sung Chul Oh
24.1 Introduction
537(1)
24.2 Current Status of Standardization of Electric Vehicles
538(4)
24.2.1 Electric Vehicles and Standardization
538(1)
24.2.2 Standardization Bodies Active in the Field
539(1)
24.2.2.1 The International Electrotechnical Commission
539(1)
24.2.2.2 The International Organization for Standardization
539(1)
24.2.2.3 Other Regional Organizations
539(1)
24.2.3 Standardization of Vehicle Components
540(1)
24.2.4 Standardization Activities in Japan
540(1)
24.2.4.1 Z108-1994: Measurement of Range and Energy Consumption (at Charger Input)
541(1)
24.2.4.2 Z109-1995: Acceleration Measurement Test
541(1)
24.2.4.3 Z110-1995: Test Method for Maximum Cruising Speed
541(1)
24.2.4.4 Z111-1995: Measurement for Reference Energy Consumption (at Battery Output)
541(1)
24.2.4.5 Z901-1995: Electric Vehicle: Standard Form of Specifications (Form of Main Specifications)
541(1)
24.2.4.6 Z112-1996: Electric Vehicle: Standard Measurement of Hill Climbing Ability
541(1)
24.2.4.7 E701-1994: Combined Power Measurement of Motor and Controller
542(1)
24.2.4.8 E702-1994: Power Measurement of Motors Equivalent to On-Board Application
542(1)
24.2.4.9 Japanese Standards Concerning Vehicle Performance and Energy Economy
542(1)
24.3 Test Procedure Using M-G Set
542(2)
24.3.1 Electric Motor
542(1)
24.3.2 Controller
543(1)
24.3.3 Application of Test Procedure
543(1)
24.3.4 Analysis of Test Items for the Type Test
543(1)
24.3.4.1 Motor Test
543(1)
24.3.4.2 Controller Test (Controller Only)
544(1)
24.4 Test Procedure Using Eddy Current-Type Engine Dynamometer
544(2)
24.4.1 Test Strategy
544(1)
24.4.2 Test Procedure
545(1)
24.4.3 Discussion on Test Procedure
545(1)
24.5 Test Procedure Using AC Dynamometer
546(2)
24.5.1 Test Strategy
546(1)
24.5.2 Test Items
547(1)
24.5.3 Test Procedure
547(1)
24.6 Testing of Electric Motor/Controller in Vehicle Environment
548(4)
24.6.1 Concept of Hardware in the Loop
548(1)
24.6.2 HIL Application to Motor/Controller
548(2)
24.6.3 Test Description
550(1)
24.6.4 Test Results
550(2)
24.7 Conclusion
552(1)
References
553(2)
PART V. Other Automotive Applications 555(1)
25. Integrated Starter Alternator
557(132)
William Cai
25.1 ISA Subsystem in Vehicle Systems
558(1)
25.2 Powertrain Coupling Architecture
558(4)
25.2.1 Crankshaft-Mounted ISA Configuration
559(1)
25.2.2 Offset-Mounted ISA Configuration
560(2)
25.3 Features and Performances of the ISA System
562(9)
25.3.1 State of the Art
563(1)
25.3.2 Features of the ISA Subsystem
564(1)
25.3.2.1 Initial Cranking and Stop/Start
564(1)
25.3.2.2 High-Efficient Large-Power Generation
566(1)
25.3.2.3 Launching Torque Assistant
567(1)
25.3.2.4 Braking Energy Regeneration
568(1)
25.3.2.5 Low Loss and Cost via High System Voltage
568(1)
25.3.2.6 Active Damping Oscillation and Absorbing Vibration
569(1)
25.3.2.7 Cylinder Shutoff
571(1)
25.3.2.8 Power APU and Other Electric Loads
571(1)
25.4 Components in the ISA Subsystem
571(31)
25.4.1 Electric Machine with Dual-Voltage Output
572(1)
25.4.2 36 V Battery with 12 V Intermediate Terminal
572(1)
25.4.3 Typical ISA Electrical System
572(1)
25.4.4 Multifunction Inverter with a Neutral Inductor
573(1)
25.4.5 Electric Machine
574(1)
25.4.5.1 Specifications of the ISA Electric Machine
574(1)
25.4.5.2 Types of ISA Electric Machines
577(1)
25.4.5.3 Application Comparison of ISA Electric Machines
594(1)
25.4.6 DC-AC Inverter and AC-DC Rectifier
595(1)
25.4.6.1 Configuration of Three-Phase Converter
595(1)
25.4.6.2 Inverter Configuration of the SRM
598(1)
25.4.7 DC-to-DC Converter
599(1)
25.4.7.1 Buck Mode of the DC-to-DC Converter
599(1)
25.4.7.2 Boost Mode of the DC-to-DC Converter
599(1)
25.4.7.3 Multifunction Inverter
600(2)
25.5 ISA System Issues
602(5)
25.5.1 Energy Storage and ISA System
602(3)
25.5.2 ISA Cooling Styles
605(1)
25.5.2.1 Air Cooling
605(1)
25.5.2.2 Liquid Cooling
606(1)
25.5.3 Other Issues
607(1)
25.6 Summary
607(1)
References
608(3)
26. Fault Tolerant Adjustable Speed Motor Drives for Automotive Applications
611(1)
Babak Fahimi
26.1 Introduction
611(9)
26.1.1 Self-Organizing Controllers
612(1)
26.1.1.1 Hierarchy of Control Methods in Induction Motor Drives
614(1)
26.1.1.2 Smooth Transition between Various Control Methods
615(1)
26.1.1.3 Reconstruction of the Phase Currents
619(1)
26.2 Digital Delta Hysteresis Regulation
620(3)
26.2.1 Current Reconstruction Algorithm for DDHR
621(2)
References
623(2)
27. Automotive Steering Systems
625(1)
Tomy Sebastian, Mohammad S. Islam, and Sayeed Mir
27.1 Introduction
625(1)
27.2 Steering System
625(5)
27.2.1 Manual Steering
626(1)
27.2.2 Hydraulically Assisted Steering
627(1)
27.2.3 Electrohydraulic Power Steering
628(1)
27.2.4 Electric Power Steering
629(1)
27.3 Advanced Steering Systems
630(1)
27.3.1 Four-Wheel Steering
631(1)
27.3.2 Future-Generation Steering Systems
631(1)
References
631(2)
28. Current Intensive Motor Drives: A New Challenge for Modern Vehicular Technology
633(1)
Babak Fahimi
28.1 Background
633(1)
28.2 Magnetic Design of Current Intensive Motor Drives
634(3)
28.3 Stability Considerations in Multiconverter Systems
637(2)
28.4 Energy Transfer
639(1)
28.5 Impact on Control
640(1)
29. Power Electronics Applications in Vehicle and Passenger Safety
641(1)
D.M.G. Preethichandra and Saman Kumara Halgamuge
29.1 Introduction
641(1)
29.2 Power Electronics in Vehicle Safety
641(9)
29.2.1 The CAN Bus Used to Network Vehicle Power Electronic Modules
642(2)
29.2.2 Engine Safety Systems
644(4)
29.2.3 Antitheft Alarm Systems
648(1)
29.2.4 Adaptive Cruise Control (ACC)
649(1)
29.2.5 Reverse Sensing and Parking System
650(1)
29.3 Power Electronics in Passenger Safety
650(4)
29.3.1 Seatbelt Control Systems
651(1)
29.3.2 Power Window Safety Systems
652(1)
29.3.3 Airbags
653(1)
29.3.4 Driver Assistance Systems and Stress Monitoring
653(1)
29.4 Conclusions
654(1)
Acknowledgments
654(1)
References
655(2)
30. Drive and Control System for Hybrid Electric Vehicles
657(1)
Weng Keong Kevin Lim, Saman Kumara Halgamuge, and Harry Charles Watson
30.1 Introduction
657(2)
30.2. Control Strategy
659(10)
30.2.1 Thermostat Series Control Strategy
660(1)
30.2.2 Series Power Follower Control Strategy
660(1)
30.2.3 Parallel ICE Assist Control Strategy
661(1)
30.2.4 Parallel Electrical Assist Control Strategy
662(2)
30.2.5 Adaptive Control Strategy
664(1)
30.2.6 Fuzzy Logic Control Strategy
665(4)
30.3 Power Electronic Control System and Strategy
669(3)
30.4 Current HEVs and Their Control Strategies
672(2)
30.4.1 Honda Insight
672(1)
30.4.2 Toyota Prius
673(1)
30.5 Conclusion
674(1)
References
674(3)
31. Battery Technology for Automotive Applications
677(1)
Dell A. Crouch
31.1 Introduction
677(5)
31.1.1 Battery Technology
678(1)
31.1.1.1 Valve Regulated Batteries
680(1)
31.1.2 Present Automotive Battery Requirements
680(1)
31.1.2.1 Battery Performance Requirements
681(1)
31.1.2.2 Battery Charging Requirements
681(1)
31.1.2.3 Battery Termination Standards
682(1)
31.2 Future Automotive Batteries
682(3)
31.3 Combinations of Batteries and Ultracapacitors
685(1)
31.4 Battery Monitoring and Charge Control
685(1)
31.5 Conclusion
686(1)
References
687(2)
Index 689

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program