did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9783540666912

Holographic Data Storage

by ; ;
  • ISBN13:

    9783540666912

  • ISBN10:

    3540666915

  • Format: Hardcover
  • Copyright: 2000-10-01
  • Publisher: Springer Nature
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $179.99 Save up to $146.58
  • Digital
    $72.39
    Add to Cart

    DURATION
    PRICE

Supplemental Materials

What is included with this book?

Summary

Holographic Data Storageis an outstanding reference book on an exciting topic reaching out to the 21st century's key technologies. The editors, Hans J. Coufal (IBM), Demetri Psaltis (CalTech), and Glenn Sincerbox (University of Arizona), together with leading experts in this area of research from both academic research and industry, bring together the latest knowledge on this technique. The book starts with an introduction on the history and fundamentals, multiplexing methods, and noise sources. The following chapters describe in detail recording media, components, channels, platforms for demonstration, and competing technologies such as classical hard disks or optical disks. More than 700 references make this book the ultimate source of information for the years to come. The book is intended for physicists, optical engineers, and executives alike.

Table of Contents

List of Contributors
xxi
Part I Introduction
History and Physical Principles
3(18)
G.T. Sincerbox
Holographic Storage Principles
4(6)
Redundant Storage
6(1)
Multiplexing
7(2)
High Data Rate
9(1)
Rapid Access
9(1)
Novel Functions
9(1)
Historical Development
10(8)
Bell Labs and the Digital Page
11(1)
IBM HOSP
11(1)
RCA Holographic Memory
12(1)
3M Holographic Data Storage System
12(1)
Thompson-CSF Read-Write Memory Using Angular Multiplexing
13(1)
NEC Holographic Coding Plate or Holotablet
13(1)
Harris-Intertype Wide-Band Recorder
13(1)
Hitachi Holographic Video Disk
14(1)
Optical Data Systems Holoscan
14(1)
Holographic Storage in the Soviet Union
14(1)
NEC Holographic Disk
15(1)
MEI Kanji Character Generation System
15(1)
Tamarack Multistore
16(1)
The PRISM Test Stand
16(1)
Stanford University
16(1)
Holoplex Memory Device for Fingerprint Verification
17(1)
Rockwell Read-Only Demonstrator
17(1)
IBM DEMON
18(1)
Summary
18(3)
References
19(2)
Volume Holographic Multiplexing Methods
21(42)
G. Barbastathis
D. Psaltis
Holographic Storage and Retrieval
21(9)
Overview of Holographic Multiplexing Methods
25(3)
Holographic Storage Geometries and Imaging Systems
28(2)
Scattering from Volume Gratings
30(25)
Volume Diffraction in the Born Approximation
31(2)
Volume Diffraction of Scalar Fields
33(9)
Volume Diffraction Calculations Using the k-Sphere Formulation
42(5)
Visualization of the Multiplexing Methods on the Grating Space
47(5)
Grating Manifold Motion and Fractal Multiplexing
52(3)
Architectures for Holographic Memories
55(4)
The Holographic 3-D Disk Geometry
55(2)
The Holographic Random-Access Memory (HRAM)
57(1)
The Phase Conjugate Geometry
57(2)
Summary
59(4)
References
59(4)
Fundamental Noise Sources in Volume Holographic Storage
63(28)
C. Gu
P. Yeh
X. Yi
J. Hong
Cross-Talk Noise
63(13)
Theoretical Formulation
64(2)
Cross-Talk Noise and Signal-to-Noise Ratio
66(6)
Storage Capacity
72(4)
Intrinsic Scattering Noise
76(3)
Noise Gratings
79(8)
Conclusion
87(4)
References
87(4)
Part II Recording Media
Bit Error Rate for Holographic Data Storage
91(10)
J.A. Hoffnagle
C.M. Jefferson
Definition of Bit Error Rate
92(1)
BER in Terms of Pixel Distribution Functions
93(1)
Experimental Distributions of CCD Pixel Values
94(5)
Applications
99(2)
References
100(1)
Media Requirements for Digital Holographic Data Storage
101(12)
R.M. Shelby
Ideal Media Parameters
101(4)
Optical Quality
101(2)
Sensitivity
103(1)
Dynamic Range
104(1)
Absorption
105(1)
Volatility
105(1)
Example Materials
105(2)
Stability of Stored Data
107(1)
Dark Decay
107(1)
Decay During Readout: Fixing
107(1)
Two-Color Recording
108(1)
Hologram Fidelity and Bit Error Rate
108(1)
Conclusions
109(4)
References
109(4)
Inorganic Photorefractive Materials
113(14)
K. Buse
E. Kratzig
Charge Transport
114(3)
Storage Properties: Dark Storage Time, Response Time, Capacity, Sensitivity
117(1)
Theoretical Performance Limits
118(1)
Various Crystals
119(2)
Nondestructive Readout
121(1)
Conclusions
122(5)
References
123(4)
Hologram Fixing and Nonvolatile Storage in Photorefractive Materials
127(22)
S.S. Orlov
W. Phillips
Thermally Assisted Ionic Fixing
128(8)
Hologram Fixing and Ionic Conduction in LiNbO3
130(1)
Lifetime of Fixed Ionic Gratings
131(3)
High-Low Fixing
134(2)
Fixing by Spontaneous Polarization Modulation
136(2)
Two-Photon Holographic Recording in Stoichiometric Lithium Niobate
138(11)
Undoped Stoichiometric Lithium Niobate
139(5)
Doped Stoichiometric Lithium Niobate
144(2)
Summary on Two-Photon Recording in LiNbO3
146(1)
References
146(3)
Two-Color Holography in Lithium Niobate
149(10)
R. Macfarlane
H. Guenther
Y. Furukawa
L. Kitamura
Materials
151(1)
Experimental
152(1)
Spectroscopy and Sensitization
152(1)
Photorefractive Properties
153(4)
Sensitivity
154(1)
Gating Ratio
155(1)
Dynamic Range
155(1)
Dark Decay
156(1)
The Role of Iron
156(1)
Conclusion
157(2)
References
158(1)
Overview of Photorefractive Polymers for Holographic Data Storage
159(12)
B. Kippelen
Brief History of Photorefractive Polymers
159(2)
Physics and Chemistry of Photorefractive Polymers
161(3)
Photogeneration
161(1)
Transport
161(2)
Index Change: Electro-Optic and Orientational Effects
163(1)
Performance of Current Photorefractive Polymers
164(3)
Spectral Sensitivity
164(1)
Dynamic Range
164(2)
Material Stability
166(1)
Speed
166(1)
Applications
167(1)
Trends and Outlook
167(4)
References
168(3)
Photopolymer Systems
171(28)
R.T. Ingwall
D. Waldman
Introduction
171(1)
Chemistry of Photopolymer Systems
171(4)
Monomers
171(2)
Photoinitiation Systems
173(1)
Binders
174(1)
Recording Characteristics of Photopolymers
175(2)
Recording Mechanism
177(4)
Refractive Index Changes
177(3)
Component Segregation
180(1)
Recording Thick Photopolymer Holograms
181(4)
Light Absorption
181(3)
Low Viscosity
184(1)
Image Quality in Photopolymer Holograms
185(6)
Shrinkage
185(6)
Data Storage in Photopolymer Holograms
191(4)
Multiplexing
191(3)
Data Page Recording
194(1)
Summary
195(4)
References
195(4)
Photopolymers for Digital Holographic Data Storage
199(10)
L. Dhar
M.G. Schnoes
H.E. Katz
A. Hale
M.L. Schilling
A.L. Harris
Hologram Formation in Photopolymer Systems
200(1)
Photopolymer Materials
200(1)
Formation of Thick, Optically Flat Media
201(1)
Holographic Characterization of Photopolymer Media
202(3)
Recording-Induced Bragg Detuning
202(1)
Dynamic Range
203(2)
Holographic Digital Data Storage in Photopolymer Media
205(2)
Summary
207(2)
References
207(2)
Photoaddressable Polymers
209(22)
T. Bieringer
Photoaddressable Polymers
209(7)
Photochemistry of Azobenzene
210(1)
Azobenzene Containing Polymers
211(1)
Liquid Crystalline Side Chain Polymers
212(4)
Materials Under Investigation
216(3)
The Choice of the Main Chain
216(1)
The Spacer
217(1)
The Choice of the Azo Group
217(1)
The Choice of the Mesogenic Group
218(1)
The Azo Group Concentration
218(1)
State of the Art in the Literature
219(2)
Photoaddressable Polymers from Bayer
221(1)
Photoaddressable Polymers Used in Holographic Data Storage
222(1)
Open Questions and Outlook
223(8)
References
223(8)
Part III Components
Laser Sources
231(10)
B. Pezeshki
S.S. Orlov
Laser Requirements
231(1)
Diode-Pumped Solid-State Lasers
232(2)
Semiconductor Lasers
234(7)
References
239(2)
Beam Deflectors and Spatial Light Modulators for Holographic Storage Application
241(18)
G. Zhou
F. Mok
D. Psaltis
Description of the Holographic Disk System
241(3)
Recording Density
244(2)
SLM Characteristics and System SNR
246(4)
Recording Rate
250(3)
Beam Deflector for Holographic Data Readout
253(6)
References
256(3)
Beam Conditioning Techniques for Holographic Recording Systems
259(12)
R.K. Kostuk
M.P. Bernal Artajona
Q. Gao
Defocusing
260(1)
Random Phase Masks
261(2)
Pseudo-Random Phase Masks
263(2)
Axicons
265(3)
Discussion and Summary
268(3)
References
268(3)
Detector Arrays for Digital Holographic Storage Applications
271(12)
S. Campbell
E.R. Fossum
General Considerations for Detector Arrays
272(2)
Size, Power and Cost
272(1)
Number of Pixels, Readout Rate, and Pixel Size Considerations
273(1)
Noise, Dynamic Range, and Analog-to-Digital Converter Resolution
273(1)
Detector Array Choices
274(4)
Quantum Efficiency
276(1)
Noise
276(2)
Readout Rate
278(1)
System Implementation
278(1)
Conclusion
279(4)
References
279(4)
Part IV Channels
Modulation Codes for Holographic Recording
283(10)
B. Marcus
Block Codes
283(3)
Correlation Detection and Balanced Block Codes
284(1)
Sparse Block Codes
285(1)
Parity Thresholding
286(1)
Strip Codes
286(7)
Balanced and Pseudo-Balanced Strip Codes
287(1)
Inter-Pixel Interference and Low-Pass Codes
288(1)
Combined Constant-Weight Low-Pass Codes
289(2)
References
291(2)
Interleaving and Error Correction for Holographic Storage
293(16)
M.A. Neifeld
W.-C. Chou
Capacity
294(3)
Error Correction
297(3)
Interleaving
300(5)
Conclusions
305(4)
References
305(4)
Equalization for Volume Holographic Data Storage Systems
309(10)
B.V.K. Vijaya Kumar
V. Vadde
M. Keskinoz
Channel Modeling
310(1)
Equalization Methods
311(4)
Zero Forcing Equalization
312(1)
LMMSE Equalization
313(1)
Partial Response (PR) Equalization
314(1)
Equalization Results
315(1)
Implementation Issues
316(1)
Summary
316(3)
References
317(2)
Gray-Scale Data Pages for Digital Holographic Data Storage
319(12)
G.W. Burr
M.A. Neifeld
Motivation for Gray-Scale
319(2)
Predistortion
321(2)
Encoding Digital Data into Gray-Scale Pixels
323(1)
Capacity Estimation
324(2)
Optimizing the Error-Correction Coding to Obtain User Capacity
326(1)
Summary
327(4)
References
328(3)
Part V Demonstration Platforms
System Optimization for Holographic Data Storage Systems
331(12)
G.W. Burr
M.P. Bernal Artajona
Noise
331(3)
Camera Quantization
334(1)
Choice of Fill-Factors and Apertures
335(2)
Capacity-Estimation Procedure
337(1)
Choice of ECC Design Point: Effect of Variations in Diffraction Efficiency
338(2)
Summary
340(3)
References
340(3)
Tamarack Optical Head Holographic Storage
343(16)
S. Redfield
Roots
343(1)
Design Evolution
343(3)
Final System Approach
346(3)
Requirements
347(1)
Optical Head
347(1)
Media Disk
348(1)
Data Format
349(1)
Holographic Optical Head
349(4)
Reference Path Optical Design
349(3)
Object Path Optical Design
352(1)
Mechanical Design
353(3)
Page Motor Design
353(1)
HOH-Media Positioning
353(1)
Changer
354(2)
Summary
356(3)
High-Density, High-Performance Data Storage via Volume Holography: The Lucent Technologies Hardware Platform
359(10)
K. Curtis
W.L. Wilson
M.C. Tackitt
A.J. Hill
S. Campbell
Materials
360(1)
Multiplexing Methods
361(2)
Components
363(2)
Holographic Demonstration System
365(2)
System Evolution
367(1)
Summary
367(2)
References
368(1)
IBM Holographic Digital Data Storage Test Platforms
369(14)
C.M. Jefferson
G.W. Burr
J.A. Hoffnagle
PRISM Photorefractive Materials Tester
369(5)
DEMON I Holographic Data Storage Engine
374(2)
DEMON II Advanced Holographic Digital Data Storage Engine
376(2)
Innovative Optics
378(5)
Axicons
378(1)
Aspherical Apodizer
379(2)
References
381(2)
Digital Holographic Demonstration Systems by Stanford University and Siros Technologies
383(16)
L. Hesselink
Optical Architectures
384(1)
Capacity Versus Transfer Rate Tradeoff
384(2)
Demonstration Platforms
386(1)
The Stanford University all Digital System Demonstration (Science, 1994)
386(5)
The Siros First Fully Automated Video Demonstration (1995)
391(1)
The Siros Fully Automated System with Electronic Readout at Video Rates (PRISM, 1996)
392(1)
The Stanford University and Siros Fully Electronic Data Readout System Achieving 1 Gbit/s (HDSS, 2000)
393(2)
The Stanford University and Siros 100-Gbytes Capacity and 1 Gbit/s Readout System Demonstrator
395(4)
References
396(3)
Holographic Read-Only Memory
399(10)
F. Mok
G. Zhou
D. Psaltis
Specifications
400(1)
Recorder
400(2)
Reader
402(2)
Replication
404(5)
Digital Holographic Data Storage with Fast Access
409(10)
J. Ma
T. Chang
S. Choi
J. Hong
Introduction
409(1)
System Architecture
410(2)
System Operation
412(7)
References
417(2)
A Demonstration Platform for Phase-Coded Multiplexing
419(10)
C. Denz
K.-O. Muller
F. Visinka
T. Tschudi
Phase-Coded Multiplexing
419(2)
Phase Code Generation
420(1)
Arithmetic Image Operations
421(1)
Design and Implementation of the Demonstrator
421(2)
Experimental Results
423(4)
Arithmetic Image Operations
425(1)
Data Encryption
426(1)
Summary
427(2)
References
428(1)
Volume Holographic Optical Correlators
429(18)
P.A. Mitkas
G.W. Burr
Optical Correlation
429(2)
Volume Holographic Correlators
431(1)
Volume Holographic Database System Architecture
432(3)
Associative Recall with Binary Data
433(1)
Associative Recall with Image Data
434(1)
Fuzzy Volume Holographic Search Engine
435(2)
All-Optical Search-and-Retrieve Demonstration
436(1)
Evaluation of Associative Recall
437(6)
Conclusion
443(4)
References
443(4)
Part VI Competing Technologies
The Continuing Evolution of Magnetic Hard Disk Drives
447(16)
E. Grochowski
Areal Density
448(2)
Magnetic Recording Head Physics GMR
450(2)
Magnetic Disk Design and Physical Spacing
452(1)
The Mechanical HDD Design and Form Factor Evolution
453(2)
Price
455(2)
Performance and Coding
457(2)
Super Paramagnetism and ``Limits'' for Magnetic Recording
459(3)
Conclusion
462(1)
References
462(1)
Optical Disk Storage Roadmap
463(12)
B.H. Schechtman
Product Categories
464(3)
Technology Status and Outlook
467(5)
Summary
472(3)
References
472(3)
Alternative Storage Techniques
475(6)
G.R. Ashton
W.C. Mitchell
Three-Dimensional Optical Recording
475(2)
Electron Trapping Optical Memory
475(1)
Liquid Crystal Optical Disk
475(1)
Surface-Enhanced Raman Optical Data Storage
476(1)
Optical Tape Technology
476(1)
New Storage Forms
477(2)
Persistent Spectral Hole Burning
477(1)
Two-Photon Three-Dimensional Recording
477(1)
Charged Particle Beam Technology
477(1)
Optical Storage Card
478(1)
Scanning Probe Storage
478(1)
Conclusions
479(2)
References
479(2)
Index 481

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program