did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9781118368251

Introduction to Chemical Engineering Kinetics and Reactor Design

by ;
  • ISBN13:

    9781118368251

  • ISBN10:

    1118368258

  • Edition: 2nd
  • Format: Hardcover
  • Copyright: 2014-05-27
  • Publisher: Wiley

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $174.88 Save up to $43.72
  • Buy Used
    $131.16
    Add to Cart Free Shipping Icon Free Shipping

    USUALLY SHIPS IN 2-4 BUSINESS DAYS

Supplemental Materials

What is included with this book?

Summary

The Second Edition features new problems that engage readers in contemporary reactor design

Highly praised by instructors, students, and chemical engineers, Introduction to Chemical Engineering Kinetics & Reactor Design has been extensively revised and updated in this Second Edition. The text continues to offer a solid background in chemical reaction kinetics as well as in material and energy balances, preparing readers with the foundation necessary for success in the design of chemical reactors. Moreover, it reflects not only the basic engineering science, but also the mathematical tools used by today’s engineers to solve problems associated with the design of chemical reactors.

Introduction to Chemical Engineering Kinetics & Reactor Design enables readers to progressively build their knowledge and skills by applying the laws of conservation of mass and energy to increasingly more difficult challenges in reactor design. The first one-third of the text emphasizes general principles of chemical reaction kinetics, setting the stage for the subsequent treatment of reactors intended to carry out homogeneous reactions, heterogeneous catalytic reactions, and biochemical transformations. Topics include:

  • Thermodynamics of chemical reactions
  • Determination of reaction rate expressions
  • Elements of heterogeneous catalysis
  • Basic concepts in reactor design and ideal reactor models
  • Temperature and energy effects in chemical reactors
  • Basic and applied aspects of biochemical transformations and bioreactors

About 70% of the problems in this Second Edition are new. These problems, frequently based on articles culled from the research literature, help readers develop a solid understanding of the material. Many of these new problems also offer readers opportunities to use current software applications such as Mathcad and MATLAB®.

By enabling readers to progressively build and apply their knowledge, the Second Edition of Introduction to Chemical Engineering Kinetics & Reactor Design remains a premier text for students in chemical engineering and a valuable resource for practicing engineers.

Author Biography

CHARLES G. HILL, JR., SC.D, is Professor Emeritus at the University of Wisconsin–Madison with over 200 peer-reviewed publications to his credit. In addition to his academic work, he has served as a consultant to government agencies and private corporations. Dr. Hill’s research has been highly interdisciplinary, including experience as a Fulbright Senior Scholar collaborating on studies of enzymatic reactions at the Institute for Catalysis and Petrochemistry (Spain).

THATCHER W. ROOT, PHD, is Professor of Chemical Engineering at the University of Wisconsin–Madison. Dr. Root was awarded an NSF Presidential Young Investigator Award and recently received the Benjamin Smith Reynolds Award for Excellence in Teaching Engineers.

Table of Contents

Preface to the First Edition

Preface to the First Edition

Chapter 1. Stoichiometric Coefficients and Reaction Progress Variables

1.0 Introduction

1.1 Basic Stoichiometric Concepts

Chapter 2. Thermodynamics of Chemical Reactions

2.0 Introduction

2.1 Chemical Potentials and Standard States

2.2 Energy Effects Associated With Chemical Reactions

2.3 Sources of Thermo-chemical Data

2.4 The Equilibrium Constant and Its Relation to

2.5 Effects of Temperature and Pressure Changes on the Equilibrium Constant

2.6 Determination of Equilibrium Compositions

2.7 Effects of Reaction Conditions on Equilibrium Yields

2.8 Heterogeneous Reactions

2.9 Equilibrium Treatment of Simultaneous Reactions

2.10 Supplementary Reading References

Chapter 3. Basic Concepts in Chemical Kinetics - Determination of the Reaction Rate Expression

3.0 Introduction

3.1 Mathematical Characterization of Simple Reaction Systems

3.2 Experimental Aspects of Kinetic Studies

Chapter 4. Basic Concepts in Chemical Kinetics -Molecular Interpretations of Kinetic Phenomena

4.0 Introduction

4.1 Reaction Mechanisms

4.2 Chain Reactions

4.3 Molecular Theories of Chemical Kinetics

Chapter 5. Chemical Systems Involving Multiple Reactions

5.0 Introduction

5.1 Reversible Reactions

5.2 Parallel (Competitive) Reactions

5.3 Series or Consecutive Reactions – Irreversible Series Reactions

5.4 Complex Reactions

Chapter 6. Elements of Heterogeneous Catalysis

6.0 Introduction

6.1 Adsorption Phenomena

6.2 Adsorption Isotherms

6.3 Reaction Rate Expressions for Heterogeneous Catalytic Reactions

6.4 Physical Characterization of Heterogeneous Catalysts

6.5 Catalyst Preparation, Fabrication, and Activation

6.6 Poisoning and Deactivation of Catalysts

Chapter 7. Liquid Phase Reactions

7.0 Introduction

7.1 Electrostatic Effects in Liquid Solution

7.2 Pressure Effects on Reactions in Liquid Solution

7.3 Homogeneous Catalysis in Liquid Solution

7.4 Correlation Methods for Kinetic Data - Linear Free Energy Relations

Chapter 8. Basic Concepts in Reactor Design and Ideal Reactor Models

8.0 Introduction

8.2 Design of Tubular Reactors

8.3 Continuous Flow Stirred Tank Reactors

8.4 Reactor Networks Composed of Combinations of Ideal Continuous Stirred Tank Reactors and Plug Flow Reactors

8.5 Summary of Fundamental Design Relations - Comparison of Isothermal Stirred Tank and Plug Flow Reactors

8.6 Semi-Batch or Semi-Flow Reactors

Chapter 9. Selectivity and Optimization Considerations in the Design of Isothermal Reactors

9.0 Introduction

9.1 Competitive (Parallel) Reactions

9.2 Consecutive (Series) Reactions 

9.3 Competitive - Consecutive Reactions

9.4 Reactor Design for Autocatalytic Reactions

Chapter 10. Temperature and Energy Effects in Chemical Reactors

10.0 Introduction

10.1 The Energy Balance as Applied to Chemical Reactors

10.2 The Ideal Well-Stirred Batch Reactor

10.3 The Ideal Continuous Flow Stirred Tank Reactor

10.4 Temperature and Energy Considerations in Tubular Reactors

10.5 Autothermal Operation of Reactors

10.6 Stable Operating Conditions in Stirred Tank Reactors

10.7 Selection of Optimum Reactor Temperature Profiles - Thermodynamic and Selectivity Considerations

Chapter 11. Deviations from Ideal Flow Conditions

11.0 Introduction

11.1 Residence Time Distribution Functions, F(t) and dF(t)

11.2 Conversion Levels in Non-Ideal Flow Reactors

11.3 General Comments and Rules of Thumb

Chapter 12. Reactor Design for Heterogeneous Catalytic Reactions

12.0 Introduction

12.2 Mass Transport Processes within Porous Catalysts

12.3 Diffusion and Reaction in Porous Catalysts

12.4 Mass Transfer between the Bulk Fluid and External Surfaces of Solid Catalysts

12.6 "Global" Reaction Rates

12.7 Design of Fixed Bed Reactors

12.8 Design of Fluidized Bed Catalytic Reactors

Chapter 13. Basic and Applied Aspects of Biochemical Transformations and Bioreactors

13.0 Introduction

13.1 Growth Cycles of Micro-Organisms: Batch Operation of Bioreactors

13.2 Principles and Special Considerations for Bioreactor Design

13.3 Commercial Scale Applications of Bioreactors for Chemical and Environmental Engineering

Appendix A Fugacity Coefficient Chart

Appendix B Nomenclature

Appendix C Supplementary References

Name Index

Subject Index

 

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program