(0) items

Introduction to Topology and Geometry,9781118108109
This item qualifies for

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Introduction to Topology and Geometry

by ;


Pub. Date:
List Price: $129.00

Rent Textbook


Buy New Textbook

Usually Ships in 3-4 Business Days

Used Textbook

We're Sorry
Sold Out


We're Sorry
Not Available

More New and Used
from Private Sellers
Starting at $38.61

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the 2nd edition with a publication date of 3/11/2013.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.


Presenting upper graduate level material in an accessible way for undergraduates, this Second Edition strikes a welcome balance between academic rigor and accessibility while covering an unparalleled range of topics, including the elements of projective geometry, conics and the applications and properties of conic selections, cross ratio points of infinity and fundamental transformations of projective geometry, the points of a homography/involution, and more. In addition, this comprehensive book includes numerous exercises and historical notes.

Author Biography

SAUL STAHL, PhD, is Professor in the Department of Mathematics at the University of Kansas and twice the winner of the Carl B. Allendoerfer Award from the Mathematical Association of America.

CATHERINE STENSON, PhD, is Professor of Mathematics at Juniata College in Huntingdon, Pennsylvania.

Table of Contents

Preface ix

Acknowledgments xiii

1 Informal Topology 1

2 Graphs 13

2.1 Nodes and Arcs 13

2.2 Traversability 16

2.3 Colorings 21

2.4 Planarity 25

2.5 Graph Homeomorphisms 31

3 Surfaces 41

3.1 Polygonal Presentations 42

3.2 Closed Surfaces 50

3.3 Operations on Surfaces 71

3.4 Bordered Surfaces 79

3.5 Riemann Surfaces 94

4 Graphs and Surfaces 103

4.1 Embeddings and Their Regions 103

4.2 Polygonal Embeddings 113

4.3 Embedding a Fixed Graph 118

4.4 Voltage Graphs and Their Coverings 128

Appendix: 141

5 Knots and Links 143

5.1 Preliminaries 144

5.2 Labelings 147

5.3 From Graphs to Links and on to Surfaces 158

5.4 The Jones Polynomial 169

5.5 The Jones Polynomial and Alternating Diagrams 187

5.6 Knots and surfaces 194

6 The Differential Geometry of Surfaces 205

6.1 Surfaces, Normals, and Tangent Planes 205

6.2 The Gaussian Curvature 212

6.3 The First Fundamental Form 219

6.4 Normal Curvatures 229

6.5 The Geodesic Polar Parametrization 236

6.6 Polyhedral Surfaces I 242

6.7 Gauss’s Total Curvature Theorem 247

6.8 Polyhedral Surfaces II 252

7 Riemann Geometries 259

8 Hyperbolic Geometry 275

8.1 Neutral Geometry 275

8.2 The Upper Half Plane 287

8.3 The HalfPlane Theorem of Pythagoras 295

8.4 HalfPlane Isometries 305

9 The Fundamental Group 317

9.1 Definitions and the Punctured Plane 317

9.2 Surfaces 325

9.3 3Manifolds 332

9.4 The Poincar´e Conjecture 357

10 General Topology 361

10.1 Metric and Topological Spaces 361

10.2 Continuity and Homeomorphisms 367

10.3 Connectedness 377

10.4 Compactness 379

11 Polytopes 387

11.1 Introduction to Polytopes 387

11.2 Graphs of Polytopes 401

11.3 Regular Polytopes 405

11.4 Enumerating Faces 415

Appendix A Curves 429

A.1 Parametrization of Curves and Arclength 429

Appendix B A Brief Survey of Groups 441

B.1 The General Background 441

B.2 Abelian Groups 446

B.3 Group Presentations 447

Appendix C Permutations 457

Appendix D Modular Arithmetic 461

Appendix E Solutions and Hints to Selected Exercises 465

References and Resources 497

Please wait while the item is added to your cart...