9780134689616

Introductory Combinatorics (Classic Version)

by
  • ISBN13:

    9780134689616

  • ISBN10:

    0134689615

  • Edition: 5th
  • Format: Paperback
  • Copyright: 2017-02-13
  • Publisher: Pearson

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
  • We Buy This Book Back!
    In-Store Credit: $18.90
    Check/Direct Deposit: $18.00
List Price: $99.97 Save up to $64.98
  • Rent Book $34.99
    Add to Cart Free Shipping

    TERM
    PRICE
    DUE

Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Summary

Appropriate for one- or two-semester, junior- to senior-level combinatorics courses.


This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles.


This trusted best-seller covers the key combinatorial ideas–including the pigeon-hole principle, counting techniques, permutations and combinations, Pólya counting, binomial coefficients, inclusion-exclusion principle, generating functions and recurrence relations, combinatortial structures (matchings, designs, graphs), and flows in networks. The 5th Edition incorporates feedback from users to the exposition throughout and adds a wealth of new exercises.

Author Biography

Richard A. Brualdi is Bascom Professor of Mathematics, Emeritus at the University of Wisconsin-Madison. He served as Chair of the Department of Mathematics from 1993-1999. His research interests lie in matrix theory and combinatorics/graph theory. Professor Brualdi is the author or co-author of six books, and has published extensively. He is one of the editors-in-chief of the journal "Linear Algebra and its Applications" and of the journal "Electronic Journal of Combinatorics." He is a member of the American Mathematical Society, the Mathematical Association of America, the International Linear Algebra Society, and the Institute for Combinatorics and its Applications. He is also a Fellow of the Society for Industrial and Applied Mathematics.

Table of Contents

1. What is Combinatorics?

1.1 Example: Perfect Covers of Chessboards

1.2 Example: Magic Squares

1.3 Example: The Four-Color Problem

1.4 Example: The Problem of the 36 Officers

1.5 Example: Shortest-Route Problem

1.6 Example: Mutually Overlapping Circles

1.7 Example: The Game of Nim

 

2. The Pigeonhole Principle

2.1 Pigeonhole Principle: Simple Form

2.2 Pigeonhole Principle: Strong Form

2.3 A Theorem of Ramsay

 

3. Permutations and Combinations

3.1 Four Basic Counting Principles

3.2 Permutations of Sets

3.3 Combinations of Sets

3.4 Permutations of Multisets

3.5 Combinations of Multisets

3.6 Finite Probability

 

4. Generating Permutations and Combinations

4.1 Generating Permutations

4.2 Inversions in Permutations

4.3 Generating Combinations

4.4 Generating r-Combinations

4.5 Partial Orders and Equivalence Relations

 

5. The Binomial Coefficients

5.1 Pascal's Formula

5.2 The Binomial Theorem

5.3 Unimodality of Binomial Coefficients

5.4 The Multinomial Theorem

5.5 Newton's Binomial Theorem

5.6 More on Partially Ordered Sets

 

6. The Inclusion-Exclusion Principle and Applications

6.1 The Inclusion-Exclusion Principle

6.2 Combinations with Repetition

6.3 Derangements

6.4 Permutations with Forbidden Positions

6.5 Another Forbidden Position Problem

6.6 Möbius Inversion

 

7. Recurrence Relations and Generating Functions

7.1 Some Number Sequences

7.2 Generating Functions

7.3 Exponential Generating Functions

7.4 Solving Linear Homogeneous Recurrence Relations

7.5 Nonhomogeneous Recurrence Relations

7.6 A Geometry Example

 

8. Special Counting Sequences

8.1 Catalan Numbers

8.2 Difference Sequences and Stirling Numbers

8.3 Partition Numbers

8.4 A Geometric Problem

8.5 Lattice Paths and Schröder Numbers

 

9. Systems of Distinct Representatives

9.1 General Problem Formulation

9.2 Existence of SDRs

9.3 Stable Marriages

 

10. Combinatorial Designs

10.1 Modular Arithmetic

10.2 Block Designs

10.3 Steiner Triple Systems

10.4 Latin Squares

 

11. Introduction to Graph Theory

11.1 Basic Properties

11.2 Eulerian Trails

11.3 Hamilton Paths and Cycles

11.4 Bipartite Multigraphs

11.5 Trees

11.6 The Shannon Switching Game

11.7 More on Trees

 

12. More on Graph Theory

12.1 Chromatic Number

12.2 Plane and Planar Graphs

12.3 A 5-color Theorem

12.4 Independence Number and Clique Number

12.5 Matching Number

12.6 Connectivity

 

13. Digraphs and Networks

13.1 Digraphs

13.2 Networks

13.3 Matching in Bipartite Graphs Revisited

 

14. Pólya Counting

14.1 Permutation and Symmetry Groups

14.2 Burnside's Theorem

14.3 Pólya's Counting formula

Rewards Program

Write a Review