CART

(0) items

Machine Design : An Integrated Approach,9780131481909
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Machine Design : An Integrated Approach

by
Edition:
4th
ISBN13:

9780131481909

ISBN10:
0131481908
Format:
Hardcover
Pub. Date:
1/1/2011
Publisher(s):
Prentice Hall
List Price: $186.00
More New and Used
from Private Sellers
Starting at $186.00
See Prices

Rent Textbook

We're Sorry
Sold Out

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

New Textbook

We're Sorry
Sold Out

Related Products


  • Machine Design
    Machine Design
  • Machine Design
    Machine Design
  • Machine Design : An Integrated Approach
    Machine Design : An Integrated Approach




Summary

Machine Designpresents the subject matter in an up-to-date and thorough manner with a strong design emphasis. This textbook emphasizes both failure theory and analysis as well as emphasizing the synthesis and design aspects of machine elements. The book points out the commonality of the analytical approaches needed to design a wide variety of elements and emphasizes the use of computer-aided engineering as an approach to the design and analysis of these classes of problems. About 100 new problems will be added throughout the book, and certain topics are updated and enhanced.

Table of Contents

Preface xix
Part I Fundamentals
1(474)
Introduction to Design
3(26)
Design
3(2)
Machine Design
3(1)
Machine
4(1)
Iteration
5(1)
A Design Process
5(3)
Problem Formulation and Calculation
8(1)
Definition Stage
8(1)
Preliminary Design Stage
8(1)
Detailed Design Stage
9(1)
Documentation Stage
9(1)
The Engineering Model
9(2)
Estimation and First-Order Analysis
10(1)
The Engineering Sketch
10(1)
Computer-Aided Design and Engineering
11(5)
Computer-Aided Design (CAD)
11(3)
Computer-Aided Engineering (CAE)
14(2)
Computational Accuracy
16(1)
The Engineering Report
16(1)
Factors of Safety and Design Codes
16(4)
Factor of Safety
17(1)
Choosing a Safety Factor
18(1)
Design and Safety Codes
19(1)
Statistical Considerations
20(1)
Units
21(4)
Example 1-1
23(2)
Summary
25(1)
Important Equations Used in This Chapter
26(1)
References
26(1)
Web References
27(1)
Bibliography
27(1)
Problems
28(1)
Materials and Processes
29(44)
Introduction
29(1)
Material-Property Definitions
29(12)
The Tensile Test
31(2)
Ductility and Brittleness
33(2)
The Compression Test
35(1)
The Bending Test
35(1)
The Torsion Test
35(2)
Fatigue Strength and Endurance Limit
37(1)
Impact Resistance
38(2)
Fracture Toughness
40(1)
Creep and Temperature Effects
40(1)
The Statistical Nature of Material Properties
41(1)
Homogeneity and Isotropy
42(1)
Hardness
42(6)
Heat Treatment
44(1)
Surface (Case) Hardening
45(1)
Heat Treating Nonferrous Materials
46(1)
Mechanical Forming and Hardening
46(2)
Coatings and Surface Treatments
48(4)
Galvanic Action
49(1)
Electroplating
50(1)
Electroless Plating
50(1)
Anodizing
51(1)
Plasma-Sprayed Coatings
51(1)
Chemical Coatings
51(1)
General Properties of Metals
52(8)
Cast Iron
52(1)
Cast Steels
53(1)
Wrought Steels
53(1)
Steel Numbering Systems
54(2)
Aluminum
56(2)
Titanium
58(1)
Magnesium
59(1)
Copper Alloys
59(1)
General Properties of Nonmetals
60(3)
Polymers
60(2)
Ceramics
62(1)
Composites
62(1)
Selecting Materials
63(1)
Summary
64(4)
Important Equations Used in This Chapter
67(1)
References
68(1)
Web References
68(1)
Bibliography
68(1)
Problems
69(4)
Load Determination
73(64)
Introduction
73(1)
Loading Classes
73(2)
Free-Body Diagrams
75(1)
Load Analysis
76(2)
Three-Dimensional Analysis
76(1)
Two-Dimensional Analysis
77(1)
Static Load Analysis
78(1)
Two-Dimensional, Static Loading Case Studies
78(15)
Case Study 1A - Bicycle Brake Lever Loading Analysis
79(5)
Case Study 2A - Hand-Operated Crimping-Tool Loading Analysis
84(4)
Case Study 3A - Automobile Scissors-Jack Loading Analysis
88(5)
Three-Dimensional, Static Loading Case Study
93(5)
Case Study 4A - Bicycle Brake Arm Loading Analysis
94(4)
Dynamic Loading Case Study
98(3)
Case Study 5A - Fourbar Linkage Loading Analysis
98(3)
Vibration Loading
101(5)
Natural Frequency
102(2)
Dynamic Forces
104(1)
Case Study 5B - Fourbar Linkage Dynamic Loading Measurement
105(1)
Impact Loading
106(5)
Energy Method
107(3)
Example 3-1
110(1)
Beam Loading
111(12)
Shear and Moment
111(1)
Singularity Functions
112(3)
Example 3-2A
115(2)
Example 3-2B
117(2)
Example 3-3A
119(1)
Example 3-3B
120(1)
Example 3-4
121(1)
Superposition
122(1)
Summary
123(2)
Important Equations Used in This Chapter
124(1)
References
125(1)
Web References
126(1)
Bibliography
126(1)
Problems
126(11)
Stress, Strain, and Deflection
137(102)
Introduction
137(1)
Stress
137(4)
Strain
141(1)
Principal Stresses
141(3)
Plane Stress and Plane Strain
144(1)
Plane Stress
144(1)
Plane Strain
144(1)
Mohr's Circles
144(5)
Example 4-1
145(2)
Example 4-2
147(1)
Example 4-3
148(1)
Applied Versus Principal Stresses
149(1)
Axial Tension
150(1)
Direct Shear Stress, Bearing Stress, and Tearout
151(1)
Direct Shear
151(1)
Direct Bearing
152(1)
Tearout Failure
152(1)
Beams and Bending Stresses
152(8)
Beams in Pure Bending
153(3)
Shear Due to Transverse Loading
156(4)
Deflection in Beams
160(11)
Deflection by Singularity Functions
162(1)
Example 4-4
162(3)
Example 4-5
165(2)
Example 4-6
167(2)
Statically Indeterminate Beams
169(1)
Example 4-7
169(2)
Castigliano's Method
171(2)
Deflection by Castigliano's Method
173(1)
Finding Redundant Reactions with Castigliano's Method
173(1)
Torsion
173(6)
Example 4-8
175(4)
Combined Stresses
179(3)
Example 4-9
180(2)
Spring Rates
182(1)
Stress Concentration
183(6)
Stress Concentration Under Static Loading
184(1)
Stress Concentration Under Dynamic Loading
185(1)
Determining Geometric Stress-Concentration Factors
185(3)
Designing to Avoid Stress Concentrations
188(1)
Axial Compression - Columns
189(11)
Slenderness Ratio
190(1)
Short Columns
190(1)
Long Columns
190(2)
End Conditions
192(2)
Intermediate Columns
194(1)
Example 4-10
195(2)
Eccentric Columns
197(3)
Stresses in Cylinders
200(2)
Thick-Walled Cylinders
201(1)
Thin-Walled Cylinders
202(1)
Case Studies in Static Stress and Deflection Analysis
202(16)
Case Study 1B - Bicycle Brake Lever Stress and Deflection Analysis
203(3)
Case Study 2B - Crimping-Tool Stress and Deflection Analysis
206(5)
Case Study 3B - Automobile Scissors-Jack Stress and Deflection Analysis
211(3)
Case Study 4B - Bicycle Brake Arm Stress Analysis
214(4)
Summary
218(6)
Important Equations Used in This Chapter
221(3)
References
224(1)
Bibliography
225(1)
Problems
225(14)
Static Failure Theories
239(60)
Introduction
239(2)
Failure of Ductile Materials Under Static Loading
241(13)
The von Mises-Hencky or Distortion-Energy Theory
242(6)
The Maximum Shear-Stress Theory
248(2)
Maximum Normal-Stress Theory
250(1)
Comparison of Experimental Data with Failure Theories
250(2)
Example 5-1
252(2)
Failure of Brittle Materials Under Static Loading
254(7)
Even and Uneven Materials
254(1)
The Coulomb-Mohr Theory
255(1)
The Modified-Mohr Theory
256(2)
Example 5-2
258(3)
Fracture Mechanics
261(8)
Fracture-Mechanics Theory
262(3)
Fracture Toughness Kc
265(3)
Example 5-3
268(1)
Using the Static Loading Failure Theories
269(1)
Case Studies in Static Failure Analysis
270(11)
Case Study 1C - Bicycle Brake Lever Failure Analysis
270(3)
Case Study 2C - Crimping Tool Failure Analysis
273(3)
Case Study 3C - Automobile Scissors-Jack Failure Analysis
276(2)
Case Study 4C - Bicycle Brake Arm Factors of Safety
278(3)
Summary
281(3)
Important Equations Used in This Chapter
282(2)
References
284(1)
Bibliography
285(1)
Problems
286(13)
Fatigue Failure Theories
299(116)
Introduction
299(3)
History of Fatigue Failure
299(3)
Mechanism of Fatigue Failure
302(3)
Crack Initiation Stage
303(1)
Crack Propagation Stage
303(1)
Fracture
304(1)
Fatigue-Failure Models
305(3)
Fatigue Regimes
305(2)
The Stress-Life Approach
307(1)
The Strain-Life Approach
307(1)
The LEFM Approach
307(1)
Machine-Design Considerations
308(1)
Fatigue Loads
309(2)
Rotating Machinery Loading
309(1)
Service Equipment Loading
310(1)
Measuring Fatigue Failure Criteria
311(12)
Fully Reversed Stresses
312(6)
Combined Mean and Alternating Stress
318(1)
Fracture-Mechanics Criteria
319(3)
Testing Actual Assemblies
322(1)
Estimating Fatigue Failure Criteria
323(15)
Estimating the Theoretical Fatigue Strength or Endurance Limit
324(2)
Correction Factors to the Theoretical Fatigue Strength
326(7)
Calculating the Corrected Fatigue Strength
333(1)
Creating Estimated S-N Diagrams
333(1)
Example 6-1
334(2)
Example 6-2
336(2)
Notches and Stress Concentrations
338(5)
Notch Sensitivity
338(4)
Example 6-3
342(1)
Residual Stresses
343(4)
Designing for High-Cycle Fatigue
347(1)
Designing for Fully Reversed Uniaxial Stresses
348(8)
Design Steps for Fully Reversed Stresses with Uniaxial Loading
348(2)
Example 6-4
350(6)
Designing for Fluctuating Uniaxial Stresses
356(16)
Creating the Modified-Goodman Diagram
357(2)
Applying Stress-Concentration Effects with Fluctuating Stresses
359(1)
Determining the Safety Factor with Fluctuating Stresses
360(4)
Design Steps for Fluctuating Stresses
364(2)
Example 6-5
366(6)
Designing for Multiaxial Stresses in Fatigue
372(5)
Frequency and Phase Relationships
372(1)
Fully Reversed Simple Multiaxial Stresses
373(1)
Fluctuating Simple Multiaxial Stresses
374(1)
Complex Multiaxial Stresses
375(2)
A General Approach to High-Cycle Fatigue Design
377(5)
Example 6-6
378(4)
A Case Study in Fatigue Design
382(12)
Case Study 6 - Redesign of a Failed Laybar for a Water-Jet Power Loom
382(12)
Summary
394(5)
Important Equations Used in This Chapter
395(4)
References
399(2)
Bibliography
401(1)
Problems
402(13)
Surface Failure
415(60)
Introduction
415(2)
Surface Geometry
417(2)
Mating Surfaces
419(1)
Friction
420(2)
Effect of Roughness on Friction
421(1)
Effect of Velocity on Friction
421(1)
Rolling Friction
421(1)
Effect of Lubricant on Friction
422(1)
Adhesive Wear
422(4)
The Adhesive-Wear Coefficient
425(1)
Abrasive Wear
426(4)
Abrasive Materials
429(1)
Abrasion-Resistant Materials
429(1)
Corrosion Wear
430(2)
Corrosion Fatigue
431(1)
Fretting Corrosion
431(1)
Surface Fatigue
432(2)
Spherical Contact
434(6)
Contact Pressure and Contact Patch in Spherical Contact
434(2)
Static Stress Distributions in Spherical Contact
436(3)
Example 7-1
439(1)
Cylindrical Contact
440(4)
Contact Pressure and Contact Patch in Parallel Cylindrical Contact
440(1)
Static Stress Distributions in Parallel Cylindrical Contact
441(2)
Example 7-2
443(1)
General Contact
444(5)
Contact Pressure and Contact Patch in General Contact
444(1)
Stress Distributions in General Contact
445(1)
Example 7-3
446(3)
Dynamic Contact Stresses
449(7)
Effect of a Sliding Component on Contact Stresses
449(5)
Example 7-4
454(2)
Surface Fatigue Failure Models---Dynamic Contact
456(3)
Surface Fatigue Strength
459(6)
Example 7-5
463(2)
Summary
465(4)
Designing to Avoid Surface Failure
466(1)
Important Equations Used in This Chapter
466(3)
References
469(2)
Problems
471(4)
Part II Machine Design
475(464)
Design Case Studies
477(26)
Introduction
477(1)
Case Study 7---A Portable Air Compressor
478(3)
Case Study 7A - Preliminary Design of a Compressor Drive Train
480(1)
Case Study 8---A Hay-Bale Lifter
481(4)
Case Study 8A - Preliminary Design of a Winch Lift
482(3)
Case Study 9---A Cam-Testing Machine
485(6)
Case Study 9A - Preliminary Design of a Cam Dynamic Test Fixture
486(5)
Summary
491(1)
References
491(1)
Design Projects
492(11)
Shafts, Keys, and Couplings
503(74)
Introduction
503(1)
Shaft Loads
503(2)
Attachments and Stress Concentrations
505(2)
Shaft Materials
507(1)
Shaft Power
507(1)
Shaft Loads
508(1)
Shaft Stresses
508(1)
Shaft Failure in Combined Loading
509(1)
Shaft Design
510(10)
General Considerations
510(1)
Design for Fully Reversed Bending and Steady Torsion
511(2)
Design for Fluctuating Bending and Fluctuating Torsion
513(1)
Example 9-1
514(5)
Example 9-2
519(1)
Shaft Deflection
520(4)
Shafts as Beams
521(1)
Shafts as Torsion Bars
521(1)
Example 9-3
522(2)
Keys and Keyways
524(8)
Parallel Keys
524(1)
Tapered Keys
525(1)
Woodruff Keys
526(1)
Stresses in Keys
526(1)
Key Materials
527(1)
Key Design
527(1)
Stress Concentrations in Keyways
528(1)
Example 9-4
528(4)
Splines
532(2)
Interference Fits
534(5)
Stresses in Interference Fits
534(1)
Stress Concentration in Interference Fits
535(1)
Fretting Corrosion
536(1)
Example 9-5
537(2)
Flywheel Design
539(8)
Energy Variation in a Rotating System
540(1)
Example 9-6
541(1)
Determining the Flywheel Inertia
542(2)
Stresses in Flywheels
544(1)
Failure Criteria
545(1)
Example 9-7
545(2)
Critical Speeds of Shafts
547(11)
Lateral Vibration of Shafts and Beams---Rayleigh's Method
550(1)
Shaft Whirl
551(2)
Torsional Vibration
553(1)
Two Disks on a Common Shaft
554(1)
Multiple Disks on a Common Shaft
555(1)
Controlling Torsional Vibrations
556(1)
Example 9-8
557(1)
Couplings
558(4)
Rigid Couplings
559(1)
Compliant Couplings
560(2)
Case Study
562(4)
Designing Driveshafts for a Portable Air Compressor
562(1)
Case Study 7B - Preliminary Design of Shafts for a Compressor Drive Train
562(4)
Summary
566(2)
Important Equations Used in This Chapter
567(1)
References
568(1)
Problems
569(8)
Bearings and Lubrication
577(58)
Introduction
577(2)
A Caveat
579(1)
Lubricants
579(2)
Viscosity
581(1)
Types of Lubrication
582(4)
Full-Film Lubrication
583(2)
Boundary Lubrication
585(1)
Material Combinations in Sliding Bearings
586(1)
Hydrodynamic Lubrication Theory
587(8)
Petroff's Equation for No-Load Torque
588(1)
Reynolds' Equation for Eccentric Journal Bearings
589(5)
Torque and Power Losses in Journal Bearings
594(1)
Design of Hydrodynamic Bearings
595(7)
Design Load Factor-The Ocvirk Number
595(3)
Design Procedures
598(1)
Example 10-1
598(4)
Nonconforming Contacts
602(6)
Example 10-2
605(3)
Rolling-Element Bearings
608(4)
Comparison of Rolling and Sliding Bearings
609(1)
Types of Rolling-Element Bearings
609(3)
Failure of Rolling-Element Bearings
612(2)
Selection of Rolling-Element Bearings
614(6)
Basic Dynamic Load Rating C
614(2)
Modified Bearing Life Rating
616(1)
Basic Static Load Rating C0
616(1)
Example 10-3
616(1)
Combined Radial and Thrust Loads
617(2)
Calculation Procedures
619(1)
Example 10-4
619(1)
Bearing Mounting Details
620(1)
Special Bearings
621(1)
Case Study
622(3)
Case Study 9B - Design of Hydrodynamic Bearings for a Cam Test Fixture
623(2)
Summary
625(3)
Important Equations Used in This Chapter
626(2)
References
628(2)
Problems
630(5)
Spur Gears
635(66)
Introduction
635(2)
Gear Tooth Theory
637(6)
The Fundamental Law of Gearing
637(1)
The Involute Tooth Form
638(1)
Pressure Angle
639(1)
Gear Mesh Geometry
640(1)
Rack and Pinion
641(1)
Changing Center Distance
641(2)
Backlash
643(1)
Relative Tooth Motion
643(1)
Gear Tooth Nomenclature
643(3)
Interference and Undercutting
646(2)
Unequal-Addendum Tooth Forms
647(1)
Contact Ratio
648(2)
Example 11-1
649(1)
Gear Trains
650(6)
Simple Gear Trains
650(1)
Compound Gear Trains
651(1)
Reverted Compound Trains
652(1)
Example 11-2
652(1)
Epicyclic or Planetary Gear Trains
653(2)
Example 11-3
655(1)
Gear Manufacturing
656(4)
Forming Gear Teeth
656(1)
Machining
657(1)
Roughing Processes
657(2)
Finishing Processes
659(1)
Gear Quality
659(1)
Loading on Spur Gears
660(2)
Example 11-4
661(1)
Stresses in Spur Gears
662(14)
Bending Stresses
663(7)
Example 11-5
670(2)
Surface Stresses
672(2)
Example 11-6
674(2)
Gear Materials
676(10)
Material Strengths
677(1)
AGMA Bending-Fatigue Strengths for Gear Materials
678(1)
AGMA Surface-Fatigue Strengths for Gear Materials
679(5)
Example 11-7
684(2)
Lubrication of Gearing
686(1)
Design of Spur Gears
686(2)
Case Study
688(4)
Case Study 7C - Design of Spur Gears for a Compressor Drive Train
688(4)
Summary
692(3)
Important Equations Used in This Chapter
694(1)
References
695(1)
Problems
696(5)
Helical, Bevel, and Worm Gears
701(38)
Introduction
701(1)
Helical Gears
701(13)
Helical Gear Geometry
703(1)
Helical-Gear Forces
704(1)
Virtual Number of Teeth
705(1)
Contact Ratios
706(1)
Stresses in Helical Gears
706(4)
Example 12-1
710(4)
Bevel Gears
714(8)
Bevel-Gear Geometry and Nomenclature
715(1)
Bevel-Gear Mounting
716(1)
Forces on Bevel Gears
716(1)
Stresses in Bevel Gears
717(1)
Example 12-2
718(4)
Wormsets
722(6)
Materials for Wormsets
724(1)
Lubrication in Wormsets
724(1)
Forces in Wormsets
724(1)
Wormset Geometry
724(1)
Rating Methods
725(2)
A Design Procedure for Wormsets
727(1)
Case Study
728(3)
Case Study 8B - Design of a Wormset Speed Reducer for a Winch Lift
728(3)
Summary
731(4)
Important Equations Used in This Chapter
733(2)
References
735(1)
Problems
736(3)
Spring Design
739(72)
Introduction
739(1)
Spring Rate
739(3)
Spring Configurations
742(2)
Spring Materials
744(5)
Spring Wire
744(3)
Flat Spring Stock
747(2)
Helical Compression Springs
749(12)
Spring Lengths
750(1)
End Details
750(1)
Active Coils
751(1)
Spring Index
751(1)
Spring Deflection
751(1)
Spring Rate
751(1)
Stresses in Helical Compression Spring Coils
752(1)
Residual Stresses
753(1)
Buckling of Compression Springs
754(1)
Compression-Spring Surge
755(1)
Allowable Strengths for Compression Springs
755(2)
The Torsional-Shear S-N Diagram for Spring Wire
757(1)
Example 13-1
757(2)
The Modified-Goodman Diagram for Spring Wire
759(1)
Example 13-2
759(2)
Designing Helical Compression Springs for Static Loading
761(5)
Example 13-3
762(4)
Designing Helical Compression Springs for Fatigue Loading
766(6)
Example 13-4
768(4)
Helical Extension Springs
772(12)
Active Coils in Extension Springs
773(1)
Spring Rate of Extension Springs
774(1)
Spring Index of Extension Springs
774(1)
Coil Preload in Extension Springs
775(1)
Deflection of Extension Springs
775(1)
Coil Stresses in Extension Springs
775(1)
End Stresses in Extension Springs
775(1)
Surging in Extension Springs
776(1)
Material Strengths for Extension Springs
777(1)
Design of Helical Extension Springs
777(1)
Example 13-5
777(7)
Helical Torsion Springs
784(8)
Terminology for Torsion Springs
785(1)
Number of Coils in Torsion Springs
785(1)
Deflection of Torsion Springs
785(1)
Spring Rate of Torsion Springs
786(1)
Coil Closure
786(1)
Coil Stresses in Torsion Springs
786(1)
Material Parameters for Torsion Springs
787(1)
Safety Factors for Torsion Springs
787(1)
Designing Helical Torsion Springs
788(1)
Example 13-6
789(3)
Belleville Spring Washers
792(6)
Load-Deflection Function for Belleville Washers
794(1)
Stresses in Belleville Washers
794(1)
Static Loading of Belleville Washers
795(1)
Dynamic Loading
796(1)
Stacking Springs
796(1)
Designing Belleville Springs
796(1)
Example 13-7
796(2)
Case Studies
798(5)
Designing a Return Spring for a Cam-Testing Machine
798(1)
Case Study 9C - Design of a Return Spring for a Cam-Follower Arm
799(4)
Summary
803(3)
Important Equations Used in This Chapter
804(2)
References
806(1)
Problems
807(4)
Screws and Fasteners
811(66)
Introduction
811(3)
Standard Thread Forms
814(3)
Tensile Stress Area
815(1)
Standard Thread Dimensions
816(1)
Power Screws
817(9)
Square, Acme, and Buttress Threads
817(1)
Power Screw Application
818(2)
Power Screw Force and Torque Analysis
820(1)
Friction Coefficients
821(1)
Self-Locking and Back-Driving of Power Screws
822(1)
Screw Efficiency
823(1)
Ball Screws
824(1)
Example 14-1
825(1)
Stresses in Threads
826(2)
Axial Stress
827(1)
Shear Stress
827(1)
Torsional Stress
828(1)
Types of Screw Fasteners
828(4)
Classification by Intended Use
829(1)
Classification by Thread Type
829(1)
Classification by Head Style
829(2)
Nuts and Washers
831(1)
Manufacturing Fasteners
832(1)
Strengths of Standard Bolts and Machine Screws
833(1)
Preloaded Fasteners in Tension
834(13)
Preloaded Bolts Under Static Loading
837(2)
Example 14-2
839(3)
Preloaded Bolts Under Dynamic Loading
842(1)
Example 14-3
843(4)
Determining the Joint Stiffness Factor
847(7)
Gasketed Joints
849(1)
Example 14-4
850(4)
Controlling Preload
854(3)
The Turn-of-the-Nut Method
855(1)
Torque-Limited Fasteners
855(1)
Load-Indicating Washers
855(1)
Torsional Stress Due to Torquing of Bolts
856(1)
Example 14-5
856(1)
Fasteners in Shear
857(5)
Dowel Pins
858(2)
Centroids of Fastener Groups
860(1)
Determining Shear Loads on Fasteners
860(1)
Example 14-6
861(1)
Case Study
862(6)
Designing Headbolts for an Air Compressor
862(1)
Case Study 7D - Design of the Headbolts for an Air Compressor
863(5)
Summary
868(2)
Important Equations Used in This Chapter
868(2)
References
870(1)
Bibliography
871(1)
Problems
871(6)
Clutches and Brakes
877(28)
Introduction
877(2)
Types of Brakes and Clutches
879(5)
Clutch/Brake Selection and Specification
884(2)
Clutch and Brake Materials
886(1)
Disk Clutches
886(3)
Uniform Pressure
887(1)
Uniform Wear
887(2)
Example 15-1
889(1)
Disk Brakes
889(1)
Drum Brakes
890(7)
Short-Shoe External Drum Brakes
891(1)
Example 15-2
892(1)
Long-Shoe External Drum Brakes
893(3)
Example 15-3
896(1)
Long-Shoe Internal Drum Brakes
897(1)
Summary
897(3)
Important Equations Used in This Chapter
899(1)
References
900(1)
Bibliography
900(1)
Problems
901(4)
Finite Element Analysis
905(34)
Introduction
905(2)
Stress and Strain Computation
906(1)
Finite Element Method
907(2)
Element Types
909(2)
Element Dimension and Degree of Freedom (DOF)
909(1)
Element Order
910(1)
H-Elements Versus P-Elements
911(1)
Element Aspect Ratio
911(1)
Meshing
911(5)
Mesh Density
912(1)
Mesh Refinement
912(1)
Convergence
912(1)
Example 16-1
913(3)
Boundary Conditions
916(10)
Example 16-2
917(3)
Example 16-3
920(4)
Example 16-4
924(2)
Applying Loads
926(1)
Testing the Model (Verification)
927(3)
Example 16-5
927(3)
Dynamic Analysis
930(2)
Example 16-6
931(1)
Case Studies
932(4)
Case Study 2D - FEA Analysis of a Crimping Tool
933(1)
Case Study 10 - FEA Analysis of a Trailer Hitch
934(2)
Summary
936(1)
References
937(1)
Bibliography
937(1)
Web Resources
938(1)
Problems
938(1)
Appendix A Cross-Sectional Properties 939(2)
Appendix B Mass Properties 941(2)
Appendix C Material Properties 943(8)
Appendix D Beam Tables 951(4)
Appendix E Stress-Concentration Factors 955(8)
Appendix F Answers to Selected Problems 963(10)
Index 973


Please wait while the item is added to your cart...