did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780470743720

Membrane Technology and Applications

by
  • ISBN13:

    9780470743720

  • ISBN10:

    0470743727

  • Edition: 3rd
  • Format: Hardcover
  • Copyright: 2012-10-01
  • Publisher: Wiley
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $143.94 Save up to $0.72
  • Buy New
    $143.22
    Add to Cart Free Shipping Icon Free Shipping

    PRINT ON DEMAND: 2-4 WEEKS. THIS ITEM CANNOT BE CANCELLED OR RETURNED.

Supplemental Materials

What is included with this book?

Summary

"... the best handbook on membrane technology, which is currently on the market... " -Membrane News (on the previous edition) This new edition of a successful title presents an authoritative overview of separation membranes, their theoretical underpinnings, manufacture and use. The first four chapters cover the basics of membrane science, including transport theory, membrane and module preparation, and concentration polarization. This material is presented with a clarity that makes it readily accessible to the beginner, yet is sufficiently thorough to be a valuable refresher for the experienced membranologist. Thereafter, each major membrane application, including reverse osmosis, ultrafiltration, microfiltration, gas separation, pervaporation, and electrodialysis, is treated in its own chapter. Topics covered include membrane materials, process design, technical and economic comparison with other separations technologies, and integration with other plant operations. Emphasis throughout is on industrial practice, and numerous tables present real life performance data and operating parameters that are seldom available in the open literature. New to this third edition: Material on fuel cells has been added to the ion exchange membrane chapter. Bioethanol (almost absent in the last edition) is covered in the pervaporation chapter. The chapter on medical applications has been fully revised to incorporate new membrane applications targeted towards blood purification, artificial organs and tissue engineering. Battery separators and chlor-alkali membranes are covered. Greenhouse gas capture and sequestration have been included in the gas separation chapter.

Author Biography

Richard W. Baker, Membrane Technology and Research, Inc.(MTR), Newark, California, USA

Table of Contents

Preface xi

Acknowledgments xiii

1. Overview of Membrane Science and Technology 1

1.1 Introduction 1

1.2 Historical Development of Membranes 1

1.3 Types of Membranes 4

1.3.1 Isotropic Membranes 4

1.3.2 Anisotropic Membranes 6

1.3.3 Ceramic, Metal, and Liquid Membranes 6

1.4 Membrane Processes 6

References 13

2. Membrane Transport Theory 15

2.1 Introduction 15

2.2 The Solution-Diffusion Model 18

2.2.1 Molecular Dynamics Simulations 18

2.2.2 Concentration and Pressure Gradients in Membranes 22

2.2.3 Application of the Solution-Diffusion Model to Specific Processes 27

2.2.4 A Unified View 50

2.3 Structure-Permeability Relationships in Solution-Diffusion Membranes 53

2.3.1 Diffusion Coefficients 55

2.3.2 Sorption Coefficients in Polymers 64

2.4 Pore-Flow Membranes 72

2.4.1 Permeation in Ultrafiltration and Microfiltration Membranes 73

2.4.2 Knudsen Diffusion and Surface Diffusion

in Microporous Membranes 79

2.4.3 Polymers with Intrinsic Microporosity (PIMs) 86

2.4.4 The Transition Region 89

2.5 Conclusions and Future Directions 90

References 92

3. Membranes and Modules 97

3.1 Introduction 97

3.2 Isotropic Membranes 98

3.2.1 Isotropic Nonporous Membranes 98

3.2.2 Isotropic Microporous Membranes 100

3.3 Anisotropic Membranes 102

3.3.1 Phase separation membranes 104

3.3.2 Interfacial Polymerization Membranes 121

3.3.3 Solution-Coated Composite Membranes 125

3.3.4 Other Anisotropic Membranes 128

3.3.5 Repairing Membrane Defects 132

3.4 Metal, Ceramic, Zeolite, Carbon, and Glass Membranes 134

3.4.1 Metal Membranes 134

3.4.2 Ceramic Membranes 135

3.4.3 Zeolite Membranes 139

3.4.4 Mixed-Matrix Membranes 141

3.4.5 Carbon Membranes 145

3.4.6 Microporous Glass Membranes 148

3.5 Liquid Membranes 148

3.6 Hollow Fiber Membranes 148

3.7 Membrane Modules 154

3.7.1 Plate-and-Frame Modules 155

3.7.2 Tubular Modules 157

3.7.3 Spiral-Wound Modules 158

3.7.4 Hollow Fiber Modules 162

3.7.5 Other Module Types 165

3.8 Module Selection 167

3.9 Conclusions and Future Directions 169

References 170

4. Concentration Polarization 179

4.1 Introduction 179

4.2 Boundary Layer Film Model 182

4.3 Determination of the Peclet Number 191

4.4 Concentration Polarization in Liquid Separation Processes 193

4.5 Concentration Polarization in Gas Separation Processes 196

4.6 Cross-Flow, Co-Flow, and Counter-Flow 197

4.7 Conclusions and Future Directions 204

References 205

5. Reverse Osmosis 207

5.1 Introduction and History 207

5.2 Theoretical Background 208

5.3 Membranes and Materials 213

5.3.1 Cellulosic Membranes 213

5.3.2 Noncellulosic Polymer Membranes 216

5.3.3 Interfacial Composite Membranes 217

5.3.4 Other Membrane Materials 219

5.4 Reverse Osmosis Membrane Categories 220

5.4.1 Seawater and Brackish Water Desalination Membranes 221

5.4.2 Nanofiltration Membranes 222

5.4.3 Hyperfiltration Organic Solvent Separating
Membranes 224

5.5 Membrane Selectivity 227

5.6 Membrane Modules 228

5.7 Membrane Fouling Control 231

5.7.1 Scale 231

5.7.2 Silt 233

5.7.3 Biofouling 233

5.7.4 Organic Fouling 235

5.7.5 Membrane Cleaning 236

5.8 Applications 237

5.8.1 Brackish Water Desalination 238

5.8.2 Seawater Desalination 240

5.8.3 Ultrapure Water 241

5.8.4 Wastewater Treatment 242

5.8.5 Nanofiltration 244

5.8.6 Organic Solvent Separation 245

5.9 Conclusions and Future Directions 246

References 247

6. Ultrafiltration 253

6.1 Introduction and History 253

6.2 Characterization of Ultrafiltration Membranes 254

6.3 Membrane Fouling 257

6.3.1 Constant Pressure/Constant Flux Operation 257

6.3.2 Concentration Polarization 261

6.3.3 Fouling Control 271

6.4 Membranes 274

6.5 Constant Pressure Modules, System Design, and Applications 274

6.5.1 Cross-Flow Ultrafiltration Modules 275

6.5.2 Constant Pressure (Cross-Flow) System Design 278

6.5.3 Applications of Cross-Flow Membrane Modules 282

6.5.4 Food Industry 284

6.6 Constant Flux Modules, System Design, and Applications 292

6.6.1 Constant Flux/Variable Pressure Modules 292

6.6.2 Submerged Membrane Modules and System Design 293

6.6.3 Submerged Membrane Applications 296

6.7 Conclusions and Future Directions 299

References 300

7. Microfiltration 303

7.1 Introduction and History 303

7.2 Background 305

7.2.1 Types of Membrane 305

7.2.2 Membrane Characterization 306

7.2.3 Microfiltration Membranes and Modules 313

7.2.4 Process Design 316

7.3 Applications 320

7.3.1 Sterile Filtration of Pharmaceuticals 322

7.3.2 Sterilization of Wine and Beer 322

7.3.3 Microfiltration in the Electronics Industry 323

7.4 Conclusions and Future Directions 323

References 324

8. Gas Separation 325

8.1 Introduction and History 325

8.2 Theoretical Background 326

8.2.1 Polymer Membranes 328

8.2.2 Metal Membranes 337

8.2.3 Ceramic and Zeolite Membranes 337

8.2.4 Thermally Rearranged/Microporous Carbon Membranes 338

8.2.5 Mixed-Matrix Membranes 338

8.3 Membrane Modules 338

8.4 Process Design 339

8.4.1 Pressure Ratio 340

8.4.2 Stage-Cut 343

8.4.3 Multistep and Multistage System Designs 345

8.4.4 Recycle Designs 347

8.5 Applications 349

8.5.1 Hydrogen Separations 350

8.5.2 Oxygen/Nitrogen Separation 352

8.5.3 Natural Gas Separations 359

8.5.4 Carbon Dioxide Separation 361

8.5.5 Vapor/Gas Separations 368

8.5.6 Dehydration of Air 369

8.5.7 Carbon Dioxide/Hydrogen and Carbon Dioxide/
Nitrogen Separations 370

8.5.8 Vapor/Vapor Separations 372

8.6 Conclusions and Future Directions 373

References 375

9. Pervaporation 379

9.1 Introduction and History 379

9.2 Theoretical Background 381

9.3 Membrane Materials and Modules 389

9.3.1 Membrane Materials 389

9.3.2 Dehydration Membranes 392

9.3.3 Organic/Water Separation Membranes 393

9.3.4 Organic/Organic Separation Membranes 394

9.3.5 Membrane Modules 395

9.4 System Design 398

9.5 Applications 400

9.5.1 Solvent Dehydration 401

9.5.2 Separation of Dissolved Organics from Water 406

9.5.3 Separation of Organic Mixtures 409

9.6 Conclusions and Future Directions 412

References 412

10. Ion Exchange Membrane Processes – Electrodialysis 417

10.1 Introduction/History 417

10.2 Theoretical Background 421

10.2.1 Transport through Ion Exchange Membranes 421

10.3 Chemistry of Ion Exchange Membranes 423

10.3.1 Homogeneous Membranes 425

10.3.2 Heterogeneous Membranes 426

10.4 Electrodialysis 428

10.4.1 Concentration Polarization and Limiting
Current Density 428

10.4.2 Current Efficiency and Power Consumption 433

10.4.3 System Design 435

10.5 Electrodialysis Applications 438

10.5.1 Brackish Water Desalination 438

10.5.2 Salt Recovery from Seawater 438

10.5.3 Other Electrodialysis Separation Applications 440

10.5.4 Continuous Electrodeionization and Ultrapure Water 442

10.5.5 Bipolar Membranes 443

10.6 Fuel Cells 444

10.7 Membranes in Chlor-Alkali Processes 448

10.8 Conclusions and Future Directions 449

References 449

11. Carrier Facilitated Transport 453

11.1 Introduction/History 453

11.2 Coupled Transport 459

11.2.1 Background 459

11.2.2 Characteristics of Coupled Transport Membranes 463

11.2.3 Coupled Transport Membranes 468

11.2.4 Applications 472

11.3 Facilitated Transport 473

11.3.1 Background 473

11.3.2 Process Designs 476

11.3.3 Applications 481

11.4 Conclusions and Future Directions 486

References 487

12. Medical Applications of Membranes 493

12.1 Introduction 493

12.2 Hemodialysis 493

12.3 Blood Oxygenators 498

12.4 Plasma Fractionation 500

12.5 Controlled Drug Delivery 501

12.5.1 Membrane Diffusion-Controlled Systems 502

12.5.2 Biodegradable Systems 510

12.5.3 Osmotic Systems 512

References 518

13. Other Membrane Processes 521

13.1 Introduction 521

13.2 Dialysis 521

13.3 Donnan Dialysis (Diffusion Dialysis) 522

13.4 Charge Mosaic Membranes and Piezodialysis 526

13.5 Membrane Contactors and Membrane Distillation 529

13.5.1 Applications of Membrane Contactors 532

13.6 Membrane Reactors 538

13.6.1 Applications of Membrane Reactors 541

13.7 Ion-Conducting Membrane Reactors 544

13.8 Pressure-Retarded Osmosis (PRO) and Reverse Electrodialysis (RED) 547

13.9 Chiral Drug Separation 551

13.10 Conclusions and Future Directions 552

References 553

Appendix 559

Index 571

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program