did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9783540222569

Meshfree Particle Methods

by ;
  • ISBN13:

    9783540222569

  • ISBN10:

    3540222561

  • Format: Hardcover
  • Copyright: 2004-11-15
  • Publisher: Springer Verlag
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $139.99 Save up to $96.45
  • Digital
    $94.33
    Add to Cart

    DURATION
    PRICE

Supplemental Materials

What is included with this book?

Summary

Meshfree Particle Methods is a comprehensive and systematic exposition of particle methods, meshfree Galerkin and partitition of unity methods, molecular dynamics methods, and multiscale methods. Most theories, computational formulations, and simulation results presented are recent developments in meshfree methods. They were either just published recently or even have not been published yet, many of them resulting from the authors´ own research. The presentation of the technical content is heuristic and explanatory with a balance between mathematical rigor and engineering practice. It can be used as a graduate textbook or a comprehensive source for researchers, providing the state of the art on Meshfree Particle Methods .

Table of Contents

1. Introduction
7(18)
1.1 Why Do We Need Meshfree Particle Methods ?
7(5)
1.2 Preliminary
12(13)
1.2.1 Notation
12(2)
1.2.2 Partition of Unity
14(1)
1.2.3 Window Function and Mollifier
15(1)
1.2.4 Hilbert Space
16(2)
1.2.5 Variational Weak Formulation
18(1)
1.2.6 Galerkin Methods
19(1)
1.2.7 Time-stepping Algorithms
20(2)
1.2.8 Voronoi Diagram and Delaunay Tessellation
22(3)
2. Smoothed Particle Hydrodynamics (SPH)
25(43)
2.1 SPH Interpolation
26(5)
2.1.1 Delta Function
26(1)
2.1.2 SPH Averaging Operator
26(2)
2.1.3 Kernel Functions
28(2)
2.1.4 Choice of Smoothing Length h
30(1)
2.2 Approximation Theory of SPH
31(5)
2.2.1 SPH Approximation Rules
31(2)
2.2.2 SPH Approximations of Derivatives (Gradients)
33(3)
2.3 Discrete Smooth Particle Hydrodynamics
36(8)
2.3.1 Conservation Laws in Continuum Mechanics
36(1)
2.3.2 SPH Continuity Equation
37(1)
2.3.3 SPH Momentum Equation
38(1)
2.3.4 SPH Energy Equation
39(1)
2.3.5 SPH Artificial Viscosity
39(3)
2.3.6 Time Integration of SPH Conservation Laws
42(1)
2.3.7 SPII Constitutive Update
43(1)
2.4 Invariant Properties of SPH Equations
44(6)
2.4.1 Galilean Invariance
44(1)
2.4.2 Conservation of Mass
45(1)
2.4.3 Conservation of Linear Momentum
45(1)
2.4.1 Conservation of Angular Momentum
46(1)
2.4.5 Conservation of Mechanical Energy
47(1)
2.4.6 Variational SPH Formulation
47(3)
2.5 Corrective SPH and Other Improvements on SPH
50(15)
2.5.1 Enforcing the Essential Boundary Condition
50(2)
2.5.2 Tensile Instability
52(3)
2.5.3 SPH Interpolation Error
55(1)
2.5.4 Correction Function (RKPM)
56(5)
2.5.5 Moving Least Square Hydrodynamics (MLSPH)
61(1)
2.5.6 Johnson-Beissel Correction
62(1)
2.5.7 Randles-Libersky Correction
63(1)
2.5.8 Krongauz-Belytschko Correction
63(1)
2.5.9 Chen-Beraun Correction
64(1)
2.6 Remarks
65(1)
Exercises
66(2)
3. Meshfree Galerkin Methods
68(74)
3.1 Moving Least Square Reproducing Kernel Interpolant
68(28)
3.1.1 Polynomial Reproducing Property
72(2)
3.1.2 The Shepard Interpolant
74(1)
3.1.3 Interpolating Moving Least Square Interpolant
75(4)
3.1.4 Orthogonal Basis for the Local Approximation
79(1)
3.1.5 Examples of RKPM Kernel Function
80(8)
3.1.6 Conservation Properties of RKPM Interpolant
88(3)
3.1.7 One-dimensional Model Problem
91(3)
3.1.8 Program Description
94(2)
3.2 Meshfree Wavelet Interpolant
96(13)
3.2.1 Variation in a Theme: Generalized Moving Least Square Reproducing Kernel
96(5)
3.2.2 Interpolation Formulas
101(2)
3.2.3 Hierarchical Partition of Unity and Hierarchical Basis
103(6)
3.3 MLS Interpolant and Diffuse Element Method
109(2)
3.3.1 Diffuse Element Method
109(1)
3.3.2 Evaluate the Derivative of MLS Interpolant
109(2)
3.4 Element-free Galerkin Method (EFGM)
111(12)
3.4.1 Lagrangian Multiplier Method
111(2)
3.4.2 Penalty Method
113(1)
3.4.3 Nitsche's Method
114(2)
3.4.4 Transform Method
116(4)
3.4.5 Boundary Singular Kernel Method
120(1)
3.4.6 Coupled Finite Element and Particle Approach
121(2)
3.5 H-P Clouds Method
123(2)
3.6 The Partition of Unity Method (PUM)
125(3)
3.6.1 Examples of Partition of Unity
126(1)
3.6.2 Examples of PUM Interpolants
127(1)
3.7 Meshfree Quadrature and Finite Sphere Method
128(5)
3.7.1 Cubature on Annular Sectors in R²
132(1)
3.8 Meshfree Local Petrov-Galerkin (MLPG) Method
133(2)
3.9 Finite Point Method
135(2)
3.10 Meshfree Local Boundary Integral Equation
137(1)
3.11 Meshfree Quadrature and Nodal Integration
138(4)
4. Approximation Theory of Meshfree Interpolants
142(45)
4.1 Requirements and Properties of Meshfree Discretization
142(12)
4.1.1 Regularity of Particle Distributions
143(9)
4.1.2 Bounds on Shape Functions and Their Derivatives
152(2)
4.2 Completeness and Consistency of Meshfree Interpolants
154(6)
4.2.1 p-th Order Consistency Condition
155(2)
4.2.2 Differential Consistency Conditions
157(3)
4.3 Meshfree Interpolation Error Estimate
160(5)
4.3.1 Local Interpolation Estimate
160(5)
4.4 Convergence of Meshfree Galerkin Procedures
165(12)
4.4.1 The Neumann Boundary Value Problem (BVP)
165(4)
4.4.2 The Dirichlet Boundary Value Problem
169(3)
4.4.3 Numerical Examples
172(5)
4.5 Approximation Theory of Meshfree Wavelet Functions
177(10)
4.5.1 The Generalized Consistency Conditions
177(4)
4.5.2 Interpolation Estimate
181(6)
5. Applications
187(89)
5.1 Explicit Meshfree Computations in Large Deformation
187(5)
5.2 Meshfree Simulation of Large Deformation
192(9)
5.2.1 Simulations of Large Deformation of Thin Shell Structures
192(2)
5.2.2 J2 Hypoelastic-plastic Material at Finite Strain
194(2)
5.2.3 Hemispheric Shell under Concentrated Loads
196(2)
5.2.4 Crash Test of a Boxbeam
198(3)
5.3 Simulations of Strain Localization
201(14)
5.3.1 Model Problems
201(1)
5.3.2 Mesh-alignment Sensitivity
201(4)
5.3.3 Meshfree Techniques for Simulations of Strain Localization
205(5)
5.3.4 Adaptive Procedures
210(5)
5.4 Simulations of Dynamics Shearband Propagation
215(13)
5.4.1 Thermal-viscoplastic Model
217(4)
5.4.2 Constitutive Modeling in Post-bifurcation Phase
221(2)
5.4.3 Numerical Examples
223(1)
5.4.4 Case I: Intermediate Speed Impact (V = 30 m/s)
224(4)
5.4.5 Case II: High Speed Impact (V = 33 m/s)
228(1)
5.5 Simulations of Crack Growth
228(13)
5.5.1 Visibility Condition
228(3)
5.5.2 Crack Surface Representation and Particle Splitting Algorithm
231(2)
5.5.3 Parametric Visibility Condition
233(5)
5.5.4 Reproducing Enrichment Technique
238(3)
5.6 Meshfree Contact Algorithm
241(8)
5.6.1 Contact Detection Algorithm
241(6)
5.6.2 Examples of Contact Sinnrlations
247(2)
5.7 Meshfree Simulations of Fluid Dynamics
249(9)
5.7.1 Meshfree Stabilization Method
249(6)
5.7.2 Multiscale Simulation of Fluid Flows
255(3)
5.8 Implicit RKPM Formulation
258(11)
5.8.1 The Governing Equations
258(2)
5.8.2 Essential Boundary Conditions
260(3)
5.8.3 Discretization of the Weak Form
263(1)
5.8.4 Time Integration Scheme
264(2)
5.8.5 Communication Structure
266(2)
5.8.6 Partitioning Schemes
268(1)
5.8.7 Outline of Procedures
268(1)
5.9 Numerical Examples of Meshfree Simulations
269(7)
5.9.1 Simple 3-D Flow Past a Circular Cylinder
269(1)
5.9.2 3-D Flow past a Building
270(6)
6. Reproducing Kernel Element Method (RKEM)
276(57)
6.1 Introduction
276(2)
6.2 Reproducing Kernel Element Interpolant
278(21)
6.2.1 Global Partition Polynomials
278(5)
6.2.2 Some Properties
283(5)
6.2.3 Error Analysis of the Method with Linear Reproducing Property
288(3)
6.2.4 Numerical Examples
291(8)
6.3 Globally Conforming Im/Cn Hierarchies
299(1)
6.4 Globally Conforming Im/Cn Hierarchy I
300(17)
6.4.1 1D I²/Cn Interpolation
304(1)
6.4.2 2D I°/Cn Quadrilateral Element
305(3)
6.4.3 Globally Compatible Q12P1I1 Quadrilateral Element
308(2)
6.4.4 Globally Compatible Q16P2I2 Quadrilateral Element
310(1)
6.4.5 Smooth I°/Cn Triangle Element
311(2)
6.4.6 Globally Compatible T9P1I1 Triangle Element
313(2)
6.4.7 Globally Compatible T18P2I2 Triangle Element
315(2)
6.5 Globally Conforming Im/Cn Hierarchy II
317(11)
6.5.1 Construction
317(3)
6.5.2 1D Example: An I¹/C4/P³ Interpolant
320(2)
6.5.3 2D Example I: Compatible Gallagher Element
322(1)
6.5.4 2D Example II: T12P3I(4/3) Triangle Element
323(3)
6.5.5 2D Example III: Q12P3I1 Quadrilateral Element
326(2)
6.6 Numerical Examples
328(5)
6.6.1 Equilateral Triangular Plate
328(3)
6.6.2 Clamped Circular Plate
331(2)
7. Molecular Dynamics and Multi-scale Methods
333(89)
7.1 Classical Molecular Dynamics
333(13)
7.1.1 Lagrangian Equations of Motion
334(2)
7.1.2 Hamiltonian Equations of Motion
336(2)
7.1.3 Interatomic Potentials
338(1)
7.1.4 Two-body (pair) Potentials
339(4)
7.1.5 Energetic Link between MD and Quantum Mechanics
343(3)
7.2 Ab initio Methods
346(9)
7.2.1 Density Functional Theory
349(1)
7.2.2 Ab initio Molecular Dynamics
350(1)
7.2.3 Tight Binding Method
351(1)
7.2.4 Numerical Examples
352(3)
7.3 Coupling between MD and FEM
355(30)
7.3.1 MAAD
355(2)
7.3.2 MD/FE Coupling - 1D Example
357(8)
7.3.3 Quasicontinuum Method and Cauchy-Born Rule
365(5)
7.3.4 Cauchy-Born Numerical Examples
370(3)
7.3.5 Multi-scale Algorithms
373(3)
7.3.6 Generalized Langevin Equation
376(3)
7.3.7 Multiscale Boundary Conditions
379(6)
7.4 Introduction of Bridging Scale Method
385(13)
7.4.1 Multi-Scale Equations of Motion
388(2)
7.4.2 Langevin Equation for Bridging Scale
390(5)
7.4.3 Staggered Time Integration Algorithm
395(1)
7.4.4 Bridging Scale Numerical Examples
396(2)
7.5 Applications
398(24)
7.5.1 Two-dimensional Wave Propagation
400(5)
7.5.2 Dynamic Crack Propagation in Two Dimensions
405(8)
7.5.3 Simulations of Nanocarbon Tubes
413(9)
8. Immersed Meshfree/Finite Element Method and Applications
422(18)
8.1 Introduction
422(1)
8.2 Formulations of Immersed Finite Element Method
423(3)
8.3 Computational Algorithm
426(1)
8.4 Application to Biological Systems
427(13)
8.4.1 Three Rigid Spheres Falling in a Tube
428(1)
8.4.2 20 Soft Spheres Falling in a Channel
429(1)
8.4.3 Fluid-flexible Structure Interaction
429(3)
8.4.4 IFEM Coupled with Protein Molecular Dynamics
432(2)
8.4.5 Cell-cell Interaction and Shear Rate Effects
434(1)
8.4.6 Micro- and Capillary Vessels
435(2)
8.4.7 Adhesion of Monocytes to Endothelial Cells
437(2)
8.4.8 Flexible Valve-viscous Fluid Interaction
439(1)
9. Other Meshfree Methods
440(13)
9.1 Natural Element Method
440(3)
9.1.1 Construction of Natural Neighbor
440(1)
9.1.2 Natural Neighbor Interpolation
441(2)
9.1.3 Examples of Natural Neighbor Interpolant
443(1)
9.2 Free Mesh Method
443(1)
9.3 Meshfree Finite Difference Methods
443(3)
9.4 Vortex-in-cell Methods
446(2)
9.5 Material Point Method (Particle-in-cell Method)
448(1)
9.6 Lattice Boltzmann Method
449(4)
References 453(26)
10. Program Listings 479

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program