(0) items

Numerical Analysis,9780321783677
This item qualifies for

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Numerical Analysis



Pub. Date:
Includes 2-weeks free access to
step-by-step solutions for this book.
Step-by-Step solutions are actual worked out problems to the questions at the end of each chapter that help you understand your homework and study for your exams. Chegg and eCampus are providing you two weeks absolutely free. 81% of students said using Step-by-Step solutions prepared them for their exams.
List Price: $177.80

Buy New Textbook

This item is temporarily unavailable from the publisher, but is expected in soon. Place your order now and we will ship it as soon as it arrives.


Downloadable Offline Access
  • Apple Devices
  • Android Devices
  • Windows Devices
  • Mac Devices


Rent Textbook

We're Sorry
Sold Out

Used Textbook

We're Sorry
Sold Out

More New and Used
from Private Sellers
Starting at $49.95
See Prices

Questions About This Book?

What version or edition is this?
This is the 2nd edition with a publication date of 11/16/2011.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.

Related Products

  • Numerical Analysis
    Numerical Analysis


Numerical Analysis, Second Edition, is a modern and readable text. This book covers not only the standard topics but also some more advanced numerical methods being used by computational scientists and engineers-topics such as compression, forward and backward error analysis, and iterative methods of solving equations-all while maintaining a level of discussion appropriate for undergraduates. Each chapter contains a Reality Check, which is an extended exploration of relevant application areas that can launch individual or team projects. MATLAB®is used throughout to demonstrate and implement numerical methods. The Second Editionfeatures many noteworthy improvements based on feedback from users, such as new coverage of Cholesky factorization, GMRES methods, and nonlinear PDEs.

Author Biography

Timothy Sauer earned his Ph.D. in mathematics at the University of California–Berkeley in 1982, and is currently a professor at George Mason University. He has published articles on a wide range of topics in applied mathematics, including dynamical systems, computational mathematics, and mathematical biology.

Table of Contents


0. Fundamentals

0.1 Evaluating a polynomial

0.2 Binary numbers

            0.2.1 Decimal to binary

            0.2.2 Binary to decimal

0.3 Floating point representation of real numbers

            0.3.1 Floating point formats

            0.3.2 Machine representation

            0.3.3 Addition of floating point numbers

0.4 Loss of significance

0.5 Review of calculus

0.6 Software and Further Reading


1. Solving Equations

1.1 The Bisection Method

            1.1.1 Bracketing a root

            1.1.2 How accurate and how fast?

1.2 Fixed point iteration

            1.2.1 Fixed points of a function

            1.2.2 Geometry of Fixed Point Iteration

            1.2.3 Linear Convergence of Fixed Point Iteration

            1.2.4 Stopping criteria

1.3 Limits of accuracy

            1.3.1 Forward and backward error

            1.3.2 The Wilkinson polynomial

            1.3.3 Sensitivity and error magnification

1.4 Newton’s Method

            1.4.1 Quadratic convergence of Newton's method

            1.4.2 Linear convergence of Newton's method

1.5 Root-finding without derivatives

            1.5.1 Secant method and variants

            1.5.2 Brent's Method

REALITY CHECK 1: Kinematics of the Stewart platform

1.6 Software and Further Reading


2. Systems of Equations

2.1 Gaussian elimination

            2.1.1 Naive Gaussian elimination

            2.1.2 Operation counts

2.2 The LU factorization

            2.2.1 Backsolving with the LU factorization

            2.2.2 Complexity of the LU factorization

2.3 Sources of error

            2.3.1 Error magnification and condition number

            2.3.2 Swamping

2.4 The PA=LU factorization

            2.4.1 Partial pivoting

            2.4.2 Permutation matrices

            2.4.3 PA = LU factorization

REALITY CHECK 2: The Euler-Bernoulli Beam

2.5 Iterative methods

            2.5.1 Jacobi Method

            2.5.2 Gauss-Seidel Method and SOR

            2.5.3 Convergence of iterative methods

            2.5.4 Sparse matrix computations

2.6 Methods for symmetric positive-definite matrices

            2.6.1 Symmetric positive-definite matrices

            2.6.2 Cholesky factorization

            2.6.3 Conjugate Gradient Method

            2.6.4 Preconditioning

2.7 Nonlinear systems of equations

            2.7.1 Multivariate Newton's method

            2.7.2 Broyden's method

2.8 Software and Further Reading


3. Interpolation

3.1 Data and interpolating functions

            3.1.1 Lagrange interpolation

            3.1.2 Newton's divided differences

            3.1.3 How many degree d polynomials pass through n points?

            3.1.4 Code for interpolation

            3.1.5 Representing functions by approximating polynomials

3.2 Interpolation error

            3.2.1 Interpolation error formula

            3.2.2 Proof of Newton form and error formula

            3.2.3 Runge phenomenon

3.3 Chebyshev interpolation

            3.3.1 Chebyshev's Theorem

            3.3.2 Chebyshev polynomials

            3.3.3 Change of interval

3.4 Cubic splines

            3.4.1 Properties of splines

            3.4.2 Endpoint conditions

3.5 Bézier curves

REALITY CHECK 3: Constructing fonts from Bézier splines

3.6 Software and Further Reading


4. Least Squares

4.1 Least squares and the normal equations

            4.1.1 Inconsistent systems of equations

            4.1.2 Fitting models to data

4.2 Linear and nonlinear models

            4.1.3 Conditioning of least squares

4.2 A survey of models

            4.2.1 Periodic data

            4.2.2 Data linearization

4.3 QR factorization

            4.3.1 Gram-Schmidt orthogonalization and least squares

            4.3.2 Modified Gram-Schmidt orthogonalization

            4.3.3 Householder reflectors

4.4 Generalized Minimum Residual (GMRES) Method

            4.4.1 Krylov methods

            4.4.2 Preconditioned GMRES

4.5 Nonlinear least squares

            4.5.1 Gauss-Newton method

            4.5.2 Models with nonlinear parameters

            4.5.3 Levenberg-Marquardt method

REALITY CHECK 4: GPS, conditioning and nonlinear least squares

4.6 Software and Further Reading


5. Numerical Differentiation and Integration

5.1 Numerical differentiation

            5.1.1 Finite difference formulas

            5.1.2 Rounding error

            5.1.3 Extrapolation

            5.1.4 Symbolic differentiation and integration

5.2 Newton-Cotes formulas for numerical integration

            5.2.1 Trapezoid rule

            5.2.2 Simpson's Rule

            5.2.3 Composite Newton-Cotes Formulas

            5.2.4 Open Newton-Cotes methods

5.3 Romberg integration

5.4 Adaptive quadrature

5.5 Gaussian quadrature

REALITY CHECK 5: Motion control in computer-aided modelling

5.6 Software and Further Reading


6. Ordinary Differential Equations

6.1 Initial value problems

            6.1.1 Euler's method

            6.1.2 Existence, uniqueness, and continuity for solutions

            6.1.3 First-order linear equations

6.2 Analysis of IVP solvers

            6.2.1 Local and global truncation error

            6.2.2 The explicit trapezoid method

            6.2.3 Taylor methods

6.3 Systems of ordinary differential equations

            6.3.1 Higher order equations

            6.3.2 Computer simulation: The pendulum

            6.3.3 Computer simulation: Orbital mechanics

6.4 Runge-Kutta methods and applications

            6.4.1 The Runge-Kutta family

            6.4.2 Computer simulation: The Hodgkin-Huxley neuron

            6.4.3 Computer simulation: The Lorenz equations

REALITY CHECK 6: The Tacoma Narrows Bridge

6.5 Variable step-size methods

            6.5.1 Embedded Runge-Kutta pairs

            6.5.2 Order 4/5 methods

6.6 Implicit methods and stiff equations

6.7 Multistep methods

            6.7.1 Generating multistep methods

            6.7.2 Explicit multistep methods

            6.7.3 Implicit multistep methods

6.8 Software and Further Reading


7. Boundary Value Problems

7.1 Shooting method

            7.1.1 Solutions of boundary value problems

            7.1.2 Shooting method implementation

REALITY CHECK 7: Buckling of a circular ring

7.2 Finite difference methods

            7.2.1 Linear boundary value problems

            7.2.2 Nonlinear boundary value problems

7.3 Collocation and the Finite Element Method

            7.3.1 Collocation

            7.3.2 Finite elements and the Galerkin method

7.4 Software and Further Reading


8. Partial Differential Equations

8.1 Parabolic equations

            8.1.1 Forward difference method

            8.1.2 Stability analysis of forward difference method

            8.1.3 Backward difference method

            8.1.4 Crank-Nicolson method

8.2 Hyperbolic equations

            8.2.1 The wave equation

            8.2.2 The CFL condition

8.3 Elliptic equations

            8.3.1 Finite difference method for elliptic equations

REALITY CHECK 8: Heat distribution on a cooling fin

            8.3.2 Finite element method for elliptic equations

8.4 Nonlinear partial differential equations

            8.4.1 Implicit Newton solver

            8.4.2 Nonlinear equations in two space dimensions

8.5 Software and Further Reading


9. Random Numbers and Applications

9.1 Random numbers

            9.1.1 Pseudo-random numbers

            9.1.2 Exponential and normal random numbers

9.2 Monte-Carlo simulation

            9.2.1 Power laws for Monte Carlo estimation

            9.2.2 Quasi-random numbers

9.3 Discrete and continuous Brownian motion

            9.3.1 Random walks

            9.3.2 Continuous Brownian motion

9.4 Stochastic differential equations

            9.4.1 Adding noise to differential equations

            9.4.2 Numerical methods for SDEs

REALITY CHECK 9: The Black-Scholes formula

9.5 Software and Further Reading


10. Trigonometric Interpolation and the FFT

10.1 The Fourier Transform

            10.1.1 Complex arithmetic

            10.1.2 Discrete Fourier Transform

            10.1.3 The Fast Fourier Transform

10.2 Trigonometric interpolation

            10.2.1 The DFT Interpolation Theorem

            10.2.2 Efficient evaluation of trigonometric functions

10.3 The FFT and signal processing

            10.3.1 Orthogonality and interpolation

            10.3.2 Least squares fitting with trigonometric functions

            10.3.3 Sound, noise, and filtering

REALITY CHECK 10: The Wiener filter

10.4 Software and Further Reading


11. Compression

11.1 The Discrete Cosine Transform

            11.1.1 One-dimensional DCT

            11.1.2 The DCT and least squares approximation

11.2 Two-dimensional DCT and image compression

            11.2.1 Two-dimensional DCT

            11.2.2 Image compression

            11.2.3 Quantization

11.3 Huffman coding

            11.3.1 Information theory and coding

            11.3.2 Huffman coding for the JPEG format

11.4 Modified DCT and audio compression

            11.4.1 Modified Discrete Cosine Transform

            11.4.2 Bit quantization

REALITY CHECK 11: A simple audio codec using the MDCT

11.5 Software and Further Reading


12. Eigenvalues and Singular Values

12.1 Power iteration methods

            12.1.1 Power iteration

            12.1.2 Convergence of power iteration

            12.1.3 Inverse power iteration

            12.1.4 Rayleigh quotient iteration

12.2 QR algorithm

            12.2.1 Simultaneous iteration

            12.2.2 Real Schur form and QR

            12.2.3 Upper Hessenberg form

REALITY CHECK 12: How search engines rate page quality

12.3 Singular value decomposition

            12.3.1 Finding the SVD in general

            12.3.2 Special case: symmetric matrices

12.4 Applications of the SVD

            12.4.1 Properties of the SVD

            12.4.2 Dimension reduction

            12.4.3 Compression

            12.4.4 Calculating the SVD

12.5 Software and Further Reading


13. Optimization

13.1 Unconstrained optimization without derivatives

            13.1.1 Golden section search

            13.1.2 Successive parabolic interpolation

            13.1.3 Nelder-Mead search

13.2 Unconstrained optimization with derivatives

            13.2.1 Newton's method

            13.2.2 Steepest descent

            13.2.3 Conjugate gradient search

            13.2.4 Nonlinear least squares

REALITY CHECK 13: Molecular conformation and numerical optimization

13.3 Software and Further Reading



Appendix A: Matrix Algebra

A.1 Matrix fundamentals

A.2 Block multiplication

A.3 Eigenvalues and eigenvectors

A.4 Symmetric matrices

A.5 Vector calculus


Appendix B: Introduction to MATLAB

B.1 Starting MATLAB

B.2 MATLAB graphics

B.3 Programming in MATLAB

B.4 Flow control

B.5 Functions

B.6 Matrix operations

B.7 Animation and movies


Please wait while the item is added to your cart...