did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780132065412

Operational Amplifiers and Linear Intergrated Circuits

by ; ;
  • ISBN13:

    9780132065412

  • ISBN10:

    013206541X

  • Edition: 5th
  • Format: Hardcover
  • Copyright: 1997-12-01
  • Publisher: Prentice Hall Professional Technical Reference
  • View Upgraded Edition

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $110.00 Save up to $27.50
  • Buy Used
    $82.50
    Add to Cart Free Shipping Icon Free Shipping

    USUALLY SHIPS IN 2-4 BUSINESS DAYS

Supplemental Materials

What is included with this book?

Table of Contents

PREFACE xxv
1 INTRODUCTION TO OP AMPS
1(12)
Learning Objectives 1(1)
1-0 Introduction
2(1)
1-1 Is There Still a Need for Analog Circuitry?
2(2)
1-1.1 Analog and Digital Systems
2(1)
1-1.2 Op Amp Development
3(1)
1-1.3 Op Amps Become Specialized
3(1)
1-2 741 General-Purpose OP Amp
4(2)
1-2.1 Circuit Symbol and Terminals
4(1)
1-2.2 Simplified Internal Circuitry of a General-Purpose Op Amp
5(1)
1-2.3 Input Stage--Differential Amplifier
6(1)
1-2.4 Intermediate Stage--Level Shifter
6(1)
1-2.5 Output Stage--Push-Pull
6(1)
1-3 Packaging and Pinouts
6(2)
1-3.1 Packaging
6(1)
1-3.2 Combining Symbol and Pinout
7(1)
1-4 How to Identify or Order an Op Amp
8(2)
1-4.1 The Identification Code
8(2)
1-4.2 Order Number Example
10(1)
1-5 Second Sources
10(1)
1-6 Breadboarding Op Amp Circuits
10(2)
1-6.1 The Power Supply
10(1)
1-6.2 Breadboarding Suggestions
11(1)
Problems
12(1)
2 FIRST EXPERIENCES WITH AN OP AMP
13(31)
Learning Objectives 13(1)
2-0 Introduction
14(2)
2-1 Op Amp Terminal
16(2)
2-1.1 Power Supply Terminals
15(1)
2-1.2 Output Terminal
16(1)
2-1.3 Input Terminals
16(1)
2-1.4 Input Bias Currents and Offset Voltage
17(1)
2-2 Open-Loop Voltage Gain
18(2)
2-2.1 Definition
18(1)
2-2.2 Differential Input Voltage, E(d)
18(1)
2-2.3 Conclusions
18(2)
2-3 Zero-Crossing Detectors
20(1)
2-3.1 Noninverting Zero-Crossing Detector
20(1)
2-3.2 Inverting Zero-Crossing Detector
21(1)
2-4 Positive- and Negative-Voltage-Level Detectors
21(1)
2-4.1 Positive-Level Detectors
21(1)
2-4.2 Negative-Level Detectors
21(1)
2-5 Typical Applications of Voltage-Level Detectors
21(6)
2-5.1 Adjustable Reference Voltage
21(1)
2-5.2 Sound-Activated Switch
22(2)
2-5.3 Light Column Voltmeter
24(2)
2-5.4 Smoke Detector
26(1)
2-6 Voltage Reference ICS
27(2)
2-6.1 Introduction
27(1)
2-6.2 Ref-02
27(1)
2-6.3 Ref-02/Voltage Level Detector Applications
27(2)
2-7 Signal Processing with Voltage-Level Detectors
29(1)
2-7.1 Introduction
29(1)
2-7.2 Sine- to Square-Wave Converter
29(1)
2-8 Computer Interfacing with Voltage-Level Detectors
29(7)
2-8.1 Introduction
29(1)
2-8.2 Quad Voltage Comparator, LM339
30(1)
2-8.3 Pulse-Width Modulator, Noninverting
31(3)
2-8.4 Inverting and Noninverting Pulse-Width Modulators
34(2)
2-9 A Pulse-Width Modulator Interface to a Microcontroller
36(1)
2-10 OP Amp Comparator Circuit Simulation
36(4)
2-10.1 Introduction
36(1)
2-10.2 Creating, Initializing, and Simulating a Circuit
37(3)
Laboratory Exercises
40(1)
Problems
40(4)
3 INVERTING AND NONINVERTING AMPLIFIERS
44(42)
Learning Objectives 44(1)
3-0 Introduction
45(1)
3-1 The Inverting Amplifier
45(7)
3-1.1 Introduction
45(1)
3-1.2 Positive Voltage Applied to the Inverting Input
45(2)
3-1.3 Load and Output Currents
47(1)
3-1.4 Negative Voltage Applied to the Inverting Input
48(1)
3-1.5 Voltage Applied to the Inverting Input
49(2)
3-1.6 Design Procedure
51(1)
3-1.7 Analysis Procedure
51(1)
3-2 Inverting Adder and Audio Mixer
52(3)
3-2.1 Inverting Adder
52(1)
3-2.2 Audio Mixer
53(1)
3-2.3 DC Offsetting an AC Signal
53(2)
3-3 Multichannel Amplifier
55(1)
3-3.1 The Need for a Multichannel Amplifier
55(1)
3-3.2 Circuit Analysis
55(1)
3-3.3 Design Procedure
56(1)
3-4 Inverting Averaging Amplifier
56(1)
3-5 Voltage Follower
57(3)
3-5.1 Introduction
57(2)
3-5.2 Using the Voltage Follower
59(1)
3-6 Noninverting Amplifier
60(4)
3-6.1 Circuit Analysis
60(2)
3-6.2 Design Procedure
62(2)
3-7 The "Ideal" Voltage Source
64(3)
3-7.1 Definition and Awareness
64(1)
3-7.2 The Unrecognized Ideal Voltage Source
64(1)
3-7.3 The Practical Ideal Voltage Source
64(2)
3-7.4 Precise Voltage Sources
66(1)
3-8 Noninverting Adder
67(1)
3-9 Single-Supply Operation
67(1)
3-10 Difference Amplifiers
68(3)
3-10.1 The Subtractor
69(1)
3-10.2 Inverting-Noninverting Amplifier
70(1)
3-11 Servoamplifier
71(2)
3-11.1 Introduction
71(1)
3-11.2 Servoamplifier Circuit Analysis
71(1)
3-11.3 Delay Action
72(1)
3-12 Designing a Signal Conditioning Circuit
73(4)
3-13 PSpice Simulation
77(5)
3-13.1 Inverting Amplifier--DC Input
78(1)
3-13.2 Inverting Amplifier--AC Input
78(2)
3-13.3 Inverting Adder
80(1)
3-13.4 Noninverting Adder
81(1)
Laboratory Exercises
82(1)
Problems
83(3)
4 COMPARATORS AND CONTROLS
86(34)
Learning Objectives 86(1)
4-0 Introduction
87(1)
4-1 Effect of Noise on Comparator Circuits
87(2)
4-2 Positive Feedback
89(3)
4-2.1 Introduction
89(1)
4-2.2 Upper-Threshold Voltage
90(1)
4-2.3 Lower-Threshold Voltage
90(2)
4-3 Zero-Crossing Detector with Hysteresis
92(1)
4-3.1 Defining Hysteresis
92(1)
4-3.2 Zero-Crossing Detector with Hysteresis as a Memory Element
93(1)
4-4 Voltage-Level Detectors with Hysteresis
93(5)
4-4.1 Introduction
93(1)
4-4.2 Noninverting Voltage-Level Detector with Hysteresis
94(2)
4-4.3 Inverting Voltage-Level Detector with Hysteresis
96(2)
4-5 Voltage-Level Detector with Independent Adjustment of Hysteresis and Center Voltage
98(3)
4-5.1 Introduction
98(2)
4-5.2 Battery-Charger Control Circuit
100(1)
4-6 On-Off Control Principles
101(1)
4-6.1 Comparators in Process Control
101(1)
4-6.2 The Room Thermostat as a Comparator
102(1)
4-6.3 Selection/Design Guideline
102(1)
4-7 An Independently Adjustable Setpoint Controller
102(4)
4-7.1 Principle of Operation
102(1)
4-7.2 Output-Input Characteristics of an Independently Adjustable Setpoint Controller
102(1)
4-7.3 Choice of Setpoint Voltages
103(1)
4-7.4 Circuit for Independently Adjustable Setpoint Voltage
104(2)
4-7.5 Precautions
106(1)
4-8 IC Precision Comparator, 111/311
106(2)
4-8.1 Introduction
106(1)
4-8.2 Output Terminal Operation
106(1)
4-8.3 Strobe Terminal Operation
106(2)
4-9 Biomedical Application
108(2)
4-10 Window Detector
110(1)
4-10.1 Introduction
110(1)
4-10.2 Circuit Operation
100(1)
4-11 Propagation Delay
110(3)
4-11.1 Definition
110(2)
4-11.2 Measurement of Propagation Delay
112(1)
4-12 Using PSpice to Model and Simulate Comparator Circuits
113(4)
4-12.1 Simulation of the Zero-Crossing Detector with Hysteresis
113(2)
4-12.2 Window Detector
115(2)
Laboratory Exercises
117(1)
Problems
118(2)
5 SELECTED APPLICATIONS OF OP AMPS
120(27)
Learning Objectives 120(1)
5-0 Introduction
121(1)
5-1 High-Resistance DC Voltmeter
121(2)
5-1.1 Basic Voltage-Measuring Circuit
121(1)
5-1.2 Voltmeter Scale Changing
122(1)
5-2 Universal High-Resistance Voltmeter
123(2)
5-2.1 Circuit Operation
123(1)
5-2.2 Design Procedure
124(1)
5-3 Voltage-to-Current Converters: Floating Loads
125(2)
5-3.1 Voltage Control of Load Current
125(1)
5-3.2 Zener Diode Tester
125(1)
5-3.3 Diode Tester
125(2)
5-4 Light-Emitting-Diode Tester
127(1)
5-5 Furnishing a Constant Current to a Grounded Load
128(4)
5-5.1 Differential Voltage-to-Current Converter
128(1)
5-5.2 Constant-High-Current Source, Grounded Load
129(1)
5-5.3 Interfacing a Microcontroller Output to a 4- to-20-mA Teleprinter
130(1)
5-5.4 4- to 2-mA Current Source
131(1)
5-6 Short-Circuit Current Measurement and Current-to-Voltage Conversion
132(2)
5-6.1 Introduction
115(17)
5-6.2 Using the Op Amp to Measure Short-Circuit Current
132(2)
5-7 Measuring Current from Photodetectors
134(1)
5-7.1 Photoconductive Cell
134(1)
5-7.2 Photodiode
135(1)
5-8 Current Amplifier
135(1)
5-9 Solar Cell Energy Measurements
136(3)
5-9.1 Introduction to the Problems
136(1)
5-9.2 Converting Solar Cell Short-Circuit Current to a Voltage
137(1)
5-9.3 Current-Divider Circuit (Current-to-Current Converter)
138(1)
5-10 Phase Shifter
139(2)
5-10.1 Introduction
139(1)
5-10.2 Phase-Shifter Circuit
140(1)
5-11 Temperature-to-Voltage Converters
141(1)
5-11.1 AD590 Temperature Transducer
141(1)
5-11.2 Celsius Thermometer
142(1)
5-11.3 Fahrenheit Thermometer
142(1)
5-12 PSpice Simulation
142(2)
Laboratory Exercises
144(1)
Problems
145(2)
6 SIGNAL GENERATORS
147(37)
Learning Objectives 147(1)
6-0 Introduction
148(1)
6-1 Free-Running Multivibrator
148(4)
6-1.1 Multivibrator Action
148(2)
6-1.2 Frequency of Oscillation
150(2)
6-2 One-Shot Multivibrator
152(4)
6-2.1 Introduction
152(1)
6-2.2 Stable State
152(1)
6-2.3 Transition to the Timing State
153(1)
6-2.4 Timing State
153(2)
6-2.5 Duration of Output Pulse
155(1)
6-2.6 Recovery Time
155(1)
6-3 Triangle-Wave Generators
156(5)
6-3.1 Theory of Operation
156(2)
6-3.2 Frequency of Operation
158(1)
6-3.3 Unipolar Triangle-Wave Generator
159(2)
6-4 Sawtooth-Wave Generator
161(5)
6-4.1 Circuit Operation
161(1)
6-4.2 Sawtooth Waveshape Analysis
161(1)
6-4.3 Design Procedure
161(2)
6-4.4 Voltage-to-Frequency Converter
163(1)
6-4.5 Frequency Modulation and Frequency Shift Keying
163(1)
6-4.6 Disadvantages
164(2)
6-5 Balanced Modulator/Demodulator, the AD630
166(1)
6-5.1 Introduction
166(1)
6-5.2 Input and Output Terminals
166(1)
6-5.3 Input-Output Waveforms
166(1)
6-6 Precision Triangle/Square-Wave Generator
166(2)
6-6.1 Circuit Operation
166(2)
6-6.2 Frequency of Oscillation
168(1)
6-7 Sine-Wave Generation Survey
168(1)
6-8 Universal Trigonometric Function Generator, the AD639
169(2)
6-8.1 Introduction
169(1)
6-8.2 Sine Function Operation
169(2)
6-9 Precision Sine-Wave Generator
171(4)
6-9.1 Circuit Operation
171(3)
6-9.2 Frequency of Oscillation
174(1)
6-9.3 High Frequency Waveform Generator
174(1)
6-10 PSpice Simulation of Signal Generator Circuit
175(6)
6-10.1 Free-Running Multivibrator
175(2)
6-10.2 One-Shot Multivibrator
177(1)
6-10.3 Bipolar Triangle-Wave Generator
178(1)
6-10.4 Unipolar Triangle-Wave Generator
179(2)
Laboratory Exercises
181(1)
Problems
182(2)
7 OP AMPS WITH DIODES
184(30)
Learning Objectives 184(1)
7-0 Introduction to Precision Rectifiers
185(1)
7-1 Linear Half-Wave Rectifiers
186(5)
7-1.1 Introduction
186(1)
7-1.2 Inverting Linear Half-Wave Rectifier, Positive Output
187(2)
7-1.3 Inverting Linear Half-Wave Rectifier, Negative Output
189(1)
7-1.4 Signal Polarity Separator
190(1)
7-2 Precision Rectifiers: The Absolute-Value Circuit
191(4)
7-2.1 Introduction
191(1)
7-2.2 Types of Precision Full-Wave Rectifiers
192(3)
7-3 Peak Detectors
195(2)
7-3.1 Positive Peak Follower and Hold
195(2)
7-3.2 Negative Peak Follower and Hold
197(1)
7-4 AC-to-DC Converter
197(3)
7-4.1 AC-to-DC Conversion or MAV Circuit
197(2)
7-4.2 Precision Rectifier with Grounded Summing Inputs
199(1)
7-4.3 AC-to-DC Converter
200(1)
7-5 Dead-Zone Circuits
200(5)
7-5.1 Introduction
200(1)
7-5.2 Dead-Zone Circuit with Negative Output
200(2)
7-5.3 Dead-Zone Circuit with Positive Output
202(3)
7-5.4 Bipolar-Output Dead-Zone Circuit
205(1)
7-6 Precision Clipper
205(1)
7-7 Triangular-to-Sine Wave Converter
205(1)
7-8 PSpice Simulation of OP Amps with Diodes
206(6)
7-8.1 Linear Half-Wave Rectifier
206(2)
7-8.2 Precision Full-Wave Rectifier
208(2)
7-8.3 Mean-Absolute-Value Amplifier
210(2)
Laboratory Exercises
212(1)
Problems
213(1)
8 DIFFERENTIAL, INSTRUMENTATION, AND BRIDGE AMPLIFIERS
214(35)
Learning Objectives 214(1)
8-0 Introduction
215(1)
8-1 Basic Differential Amplifier
215(2)
8-1.1 Introduction
215(2)
8-1.2 Common-Mode Voltage
217(1)
8-2 Differential versus Single-Input Amplifiers
217(2)
8-2.1 Measurement with a Single-Input Amplifier
217(1)
8-2.2 Measurement with a Differential Amplifier
218(1)
8-3 Improving the Basic Differential Amplifier
219(3)
8-3.1 Increasing Input Resistance
219(1)
8-3.2 Adjustable Gain
219(3)
8-4 Instrumentation Amplifier
222(3)
8-4.1 Circuit Operation
222(2)
8-4.2 Referencing Output Voltage
224(1)
8-5 Sensing and Measuring with the Instrumentation Amplifier
225(4)
8-5.1 Sense Terminal
225(1)
8-5.2 Differential Voltage Measurements
226(1)
8-5.3 Differential Voltage-to-Current Converter
227(2)
8-6 The Instrumentation Amplifier as a Signal Conditioning Circuit
229(2)
8-6.1 Introduction to the Strain Gage
229(1)
8-6.2 Strain Gage Material
229(1)
8-6.3 Using Strain-Gage Data
230(1)
8-6.4 Strain-Gage Mounting
231(1)
8-6.5 Strain-Gage Resistance Changes
231(1)
8-7 Measurement of Small Resistance Changes
231(3)
8-7.1 Need for a Resistance Bridge
231(1)
8-7.2 Basic Resistance Bridge
232(1)
8-7.3 Thermal Effect on Bridge Balance
233(1)
8-8 Balancing a Strain-Gage Bridge
234(1)
8-8.1 The Obvious Technique
234(1)
8-8.2 The Better Technique
234(1)
8-9 Increasing Strain-Gage Bridge Output
235(2)
8-10 Practical Strain-Gage Application
237(2)
8-11 Measurement of Pressure, Force, and Weight
239(1)
8-12 Basic Bridge Amplifier
239(5)
8-12.1 Introduction
239(1)
8-12.2 Basic Bridge Circuit Operations
240(1)
8-12.3 Temperature Measurement with a Bridge Circuit
241(3)
8-12.4 Bridge Amplifiers and Computers
244(1)
8-13 Adding Versatility to the Bridge Amplifier
244(1)
8-13.1 Grounded Transducers
244(1)
8-13.2 High-Current Transducers
244(1)
Laboratory Exercises
245(1)
Problems
246(3)
9 DC PERFORMANCE: BIAS, OFFSETS, AND DRIFT
249(21)
Learning Objectives 249(1)
9-0 Introduction
250(1)
9-1 Input Bias Currents
251(1)
9-2 Input Bias Currents
252(1)
9-3 Effect of Bias Currents on Output Voltage
253(3)
9-3.1 Simplification
253(1)
9-3.2 Effect of (-) Input Bias Current
253(2)
9-3.3 Effect of (+) Input Bias Current
255(1)
9-4 Effect of Offset Current on Output Voltage
256(2)
9-4.1 Current-Compensating the Voltage Follower
256(1)
9-4.2 Current-Compensating Other Amplifiers
257(1)
9-4.3 Summary on Bias-Current Compensation
257(1)
9-5 Input Offset Voltage
258(3)
9-5.1 Definition and Model
258(1)
9-5.2 Effect of Input Offset Voltage on Output Voltage
259(1)
9-5.3 Measurement of Input Offset Voltage
259(2)
9-6 Input Offset Voltage for the Adder Circuit
261(1)
9-6.1 Comparison of Signal Gain and Offset Voltage Gain
261(1)
9-6.2 How Not to Eliminate the Effects of Offset Voltage
262(1)
9-7 Nulling-Out Effect of Offset Voltage and Bias Currents
262(2)
9-7.1 Design or Analysis Sequence
262(1)
9-7.2 Null Circuits for Offset Voltage
263(1)
9-7.3 Nulling Procedure for Output Voltage
264(1)
9-8 Drift
264(2)
9-9 Measurement of Offset Voltage and Bias Currents
266(1)
Laboratory Exercises
267(1)
Problems
268(2)
10 AC PERFORMANCE: BANDWIDTH, SLEW RATE, NOISE
270(19)
Learning Objectives 270(1)
10-0 Introduction
271(1)
10-1 Frequency Response of the Op Amp
271(4)
10-1.1 Internal Frequency Compensation
271(1)
10-1.2 Frequency-Response Curve
272(1)
10-1.3 Unity-Gain Bandwidth
273(1)
10-1.4 Rise Time
274(1)
10-2 Amplifier Gain and Frequency Response
275(5)
10-2.1 Effect of Open-Loop Gain on Closed-Loop Gain of an Amplifier, DC Operation
275(2)
10-2.2 Small-Signal Bandwidth, Low-and High-Frequency Limits
277(1)
10-2.3 Measuring Frequency Response
278(1)
10-2.4 Bandwidth of Inverting and Noninverting Amplifiers
278(1)
10-2.5 Finding Bandwidth by a Graphical Method
279(1)
10-3 Slew Rate and Output Voltage
280(5)
10-3.1 Definition of Slew Rate
281(1)
10-3.2 Cause of Slew-Rate Limiting
281(1)
10-3.3 Slew-Rate Limiting of Sine Waves
281(3)
10-3.4 Slew Rate Made Easy
284(1)
10-4 Noise in the Output Voltage
285(1)
10-4.1 Introduction
285(1)
10-4.2 Noise in Op Amp Circuits
285(1)
10-4.3 Noise Gain
286(1)
10-4.4 Noise in the Inverting Adder
286(1)
10-5.5 Summary
286(1)
Laboratory Exercises
286(2)
Problems
288(1)
11 ACTIVE FILTERS
289(38)
Learning Objectives 289(1)
11-0 Introduction
290(1)
11-1 Basic Low-Pass Filter
291(3)
11-1.1 Introduction
291(1)
11-1.2 Designing the Filter
292(2)
11-1.3 Filter Response
294(1)
11-2 Introduction to the Butterworth Filter
294(1)
11-3 -40-dB/Decade Low-Pass Butterworth Filter
295(2)
11-3.1 Simplified Design Procedure
295(2)
11-3.2 Filter Response
297(1)
11-4 -60-dB/Decade Low-Pass Butterworth Filter
297(3)
11-4.1 Simplified Design Procedure
297(2)
11-4.2 Filter Response
299(1)
11-5 High-Pass Butterworth Filters
300(7)
11-5.1 Introduction
300(1)
11-5.2 20-dB/Decade Filter
301(2)
11-5.3 40-dB/Decade Filter
303(1)
11-5.4 60-dB/Decade Filter
304(2)
11-5.5 Comparison of Magnitudes and Phase Angles
306(1)
11-6 Introduction to Bandpass Filters
307(3)
11-6.1 Frequency Response
307(1)
11-6.2 Bandwidth
308(1)
11-6.3 Quality Factor
309(1)
11-6.4 Narrowband and Wideband Filters
309(1)
11-7 Basic Wideband Filter
310(1)
11-7.1 Cascading
310(1)
11-7.2 Wideband Filter Circuit
310(1)
11-7.3 Frequency Response
310(1)
11-8 Narrowband Bandpass Filters
311(3)
11-8.1 Narrowband Filter Circuit
312(1)
11-8.2 Performance
312(1)
11-8.3 Stereo-Equalizer Octave Filter
313(1)
11-9 Notch Filters
314(1)
11-9.1 Introduction
314(1)
11-9.2 Notch Filter Theory
315(1)
11-10 120-Hz Notch Filter
315(2)
11-10.1 Need for a Notch Filter
315(1)
11-10.2 Statement of the Problem
316(1)
11-10.3 Procedure to Make a Notch Filter
316(1)
11-10.4 Bandpass Filter Components
316(1)
11-10.5 Final Assembly
317(1)
11-11 Simulation of Active Filter Circuits Using PSpice
317(6)
11-11.1 Low Pass Filter
318(2)
11-11.2 High Pass Filter
320(1)
11-11.3 Bandpass Filter
321(2)
Laboratory Exercises
323(2)
Problems
325(2)
12 MODULATING, DEMODULATING, AND FREQUENCY CHANGING WITH THE MULTIPLIER
327(33)
Learning Objectives 327(1)
12-0 Introduction
328(1)
12-1 Multiplying DC Voltages
328(3)
12-1.1 Multiplier Scale Factor
328(1)
12-1.2 Multiplier Quadrants
329(2)
12-2 Squaring a Number or DC Voltage
331(1)
12-3 Frequency Doubling
331(3)
12-3.1 Principle of the Frequency Doubler
331(1)
12-3.2 Squaring a Sinusoidal Voltage
332(2)
12-4 Phase-Angle Detection
334(3)
12-4.1 Basic Theory
334(2)
12-4.2 Phase-Angle Meter
336(1)
12-4.3 Phase Angles Greater than XXX90XXX
337(1)
12-5 Analog Divider
337(2)
12-6 Finding Square Roots
339(1)
12-7 Introduction to Amplitude Modulation
339(6)
12-7.1 Need for Amplitude Modulation
339(1)
12-7.2 Defining Amplitude Modulation
340(1)
12-7.3 The Multiplier Used as a Modulator
340(1)
12-7.4 Mathematics of a Balanced Modulator
340(2)
12-7.5 Sum and Difference Frequencies
342(2)
12-7.6 Side Frequencies and Sidebands
344(1)
12-8 Standard Amplitude Modulation
345(4)
12-8.1 Amplitude Modulator Circuit
345(3)
12-8.2 Frequency Spectrum of a Standard AM Modulator
348(1)
12-8.3 Comparison of Standard AM Modulators and Balanced Modulators
349(1)
12-9 Demodulating an AM Voltage
349(4)
12-10 Demodulating a Balanced Modulator Voltage
353(1)
12-11 Single-Side and Modulation and Demodulation
353(1)
12-12 Frequency Shifting
353(2)
12-13 Universal Amplitude Modulation Receiver
355(3)
12-13.1 Tuning and Mixing
355(2)
12-13.2 Intermediate-Frequency Amplifier
357(1)
12-13.3 Detection Process
357(1)
12-13.4 Universal AM Receiver
357(1)
Laboratory Exercises
358(1)
Problems
358(2)
13 INTEGRATED-CIRCUIT TIMERS
360(38)
Learning Objectives 360(1)
13-0 Introduction
361(1)
13-1 Operating Modes of the 555 Timer
362(1)
13-2 Terminals of the 555
363(6)
13-2.1 Packaging and Power Supply Terminals
363(1)
13-2.2 Output Terminal
364(1)
13-2.3 Reset Terminal
364(1)
13-2.4 Discharge Terminal
364(1)
13-2.5 Control Voltage Terminal
364(1)
13-2.6 Trigger and Threshold Terminals
364(2)
13-2.7 Power-on Time Delays
366(3)
13-3 Free-Running or Astable Operation
369(4)
13-3.1 Circuit Operation
369(1)
13-3.2 Frequency of Oscillation
369(2)
13-3.3 Duty Cycle
371(1)
13-3.4 Extending the Duty Cycle
372(1)
13-4 Applications of the 555 as an Astable Multivibrator
373(3)
13-4.1 Tone-Burst Oscillator
373(2)
13-4.2 Voltage-Controlled Frequency Shifter
375(1)
13-5 One-Shot or Monostable Operation
376(3)
13-5.1 Introduction
376(2)
13-5.2 Input Pulse Circuit
378(1)
13-6 Applications of the 555 as a One-Shot Multivibrator
379(3)
13-6.1 Water-Level Fill Control
379(1)
13-6.2 Touch Switch
379(1)
13-6.3 Frequency Divider
380(1)
13-6.4 Missing Pulse Detector
381(1)
13-7 Introduction to Counter Timers
382(1)
13-8 The XR 2240 Programmable Timer/Counter
383(4)
13-8.1 Circuit Description
383(1)
13-8.2 Counter Operation
384(2)
13-8.3 Programming the Outputs
386(1)
13-9 Timer/Counter Applications
387(5)
13-9.1 Timing Applications
387(1)
13-9.2 Free-Running Oscillator, Synchronized Outputs
388(1)
13-9.3 Binary Pattern Signal Generator
389(1)
13-9.4 Frequency Synthesizer
390(2)
13-10 Switch Programmable Timer
392(1)
13-10.1 Timing Intervals
392(1)
13-10.2 Circuit Operation
392(1)
13-11 PSpice Simulation of 555 Timer
392(5)
13-11.1 Astable or Free-Running Multivibrator
392(3)
13-11.2 Tone-Burst-Control Circuit
395(2)
Laboratory Exercises
397(1)
Problems
397(1)
14 DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERTERS
398(43)
Learning Objectives 398(1)
14-0 Introduction
399(1)
14-1 DAC Characteristics
399(3)
14-1.1 Resolution
399(2)
14-1.2 Output-Input Equation
401(1)
14-2 ADC Characteristics
402(2)
14-2.1 Output-Input Equation
402(2)
14-2.2 Quantization Error
404(1)
14-3 Digital-to-Analog Conversion Process
404(3)
14-3.1 Block Diagram
404(1)
14-3.2 R-2R Ladder Network
405(1)
14-3.3 Ladder Currents
406(1)
14-3.4 Ladder Equation
407(1)
14-4 Voltage Output DACs
407(2)
14-5 Multiplying DAC
409(1)
14-6 8-Bit Digital-to-Analog Converter; the DAC-08
410(6)
14-6.1 Power Supply Terminals
410(1)
14-6.2 Reference (Multiplying) Terminal
410(1)
14-6.3 Digital Input Terminals
410(2)
14-6.4 Analog Output Currents
412(1)
14-6.5 Unipolar Output Voltage
413(1)
14-6.6 Bipolar Analog Output Voltage
414(2)
14-7 Microprocessor Compatibility
416(1)
14-7.1 Interfacing Principles
416(1)
14-7.2 Memory Buffer Registers
416(1)
14-7.3 The Selection Process
416(1)
14-8 AD558 Microprocessor-Compatible DAC
417(4)
14-8.1 Introduction
417(2)
14-8.2 Power Supply
419(1)
14-8.3 Digital Inputs
419(1)
14-8.4 Logic Circuitry
419(1)
14-8.5 Analog Output
419(2)
14-8.6 Dynamic Test Circuit
421(1)
14-9 Integrating ADC
421(4)
14-9.1 Types of ADCs
421(1)
14-9.2 Principles of Operation
421(2)
14-9.3 Signal Integrate Phase, T(1)
423(1)
14-9.4 Reference Integrate Phase, T(2)
423(1)
14-9.5 The Conversion
424(1)
14-9.6 Auto-Zero
425(1)
14-9.7 Summary
425(1)
14-10 Successive Approximation ADC
425(3)
14-10.1 Circuit Operation
426(1)
14-10.2 Successive Approximation Analogy
426(2)
14-10.3 Conversion Time
428(1)
14-11 ADCs for Microprocessors
428(1)
14-12 AD670 Microprocessor-Compatible ADC
429(3)
14-12.1 Analog Input Voltage Terminals
429(1)
14-12.2 Digital Output Terminals
429(2)
14-12.3 Input Option Terminal
431(1)
14-12.4 Output Option Terminal
431(1)
14-12.5 Microprocessor Control Terminals
432(1)
14-13 Testing the AD670
432(2)
14-14 Flash Converters
434(1)
14-14.1 Principles of Operation
434(1)
14-14.2 Conversion Time
434(1)
14-15 Frequency Response of ADCs
434(3)
14-15.1 Aperture Error
434(2)
14-15.2 Sample-and-Hold Amplifier
436(1)
Laboratory Exercises
437(2)
Problems
439(2)
15 POWER SUPPLIES
441(28)
Learning Objectives 441(1)
15-0 Introduction
442(1)
15-1 Introduction to the Unregulated Power Supply
442(3)
15-1.1 Power Transformer
442(2)
15-1.2 Rectifier Diodes
444(1)
15-1.3 Positive versus Negative Supplies
444(1)
15-1.4 Filter Capacitor
445(1)
15-1.5 Load
445(1)
15-2 DC Voltage Regulation
445(4)
15-2.1 Load Voltage Variations
445(1)
15-2.2 DC Voltage Regulation Curve
446(1)
15-2.3 DC Model of a Power Supply
447(2)
15-2.4 Percent Regulation
449(1)
15-3 AC Ripple Voltage
449(3)
15-3.1 Predicting AC Ripple Voltage
449(2)
15-3.2 Ripple Voltage Frequency and Percent Ripple
451(1)
15-3.3 Controlling Ripple Voltage
452(1)
15-4 Design Procedure for a Full-Wave Bridge Unregulated Supply
452(4)
15-4.1 Design Specification, General
452(4)
15-5 Bipolar and Two-Value Unregulated Power Supplies
456(1)
15-5.1 Bipolar or Positive and Negative Power Supplies
456(1)
15-5.2 Two-Value Power Supplies
457(1)
15-6 Need for Voltage Regulation
457(1)
15-7 The History of Linear Voltage Regulators
457(1)
15-7.1 The First Generation
457(1)
15-7.2 The Second Generation
458(1)
15-7.3 The Third Generation
458(1)
15-8 Linear IC Voltage Regulators
458(2)
15-8.1 Classification
458(1)
15-8.2 Common Characteristics
458(2)
15-8.3 Self-Protection Circuits
460(1)
15-8.4 External Protection
460(1)
15-8.5 Ripple Reduction
460(1)
15-9 Power Supply for Logic Circuits
460(1)
15-9.1 The Regulator Circuit
460(1)
15-9.2 The Unregulated Supply
461(1)
15-10 XXX15-V Power Supplies for Linear Application
461(2)
15-10.1 High-Current XXX 15-V Regulator
461(1)
15-10.2 Low-Current XXX 15-V Regulator
462(1)
15-10.3 Unregulated Supply for the XXX 15-V Regulators
463(1)
15-11 Adjustable Three-Terminal Positive Voltage Regulator (the LM317HV) and Negative Voltage Regulator (the LM337HV)
463(1)
15-12 Load Voltage Adjustment
463(3)
15-12.1 Adjusting the Positive Regulated Output Voltage
463(2)
15-12.2 Characteristics of the LM317HVK
465(1)
15-12.3 Adjustable Negative-Voltage Regulator
465(1)
15-12.4 External Protection
465(1)
15-13 Adjustable Laboratory-Type Voltage Regulator
466(1)
15-14 Other Linear Regulators
467(1)
Laboratory Exercise
467(1)
Problems
467(2)
APPENDIX 1 XXXA741 FREQUENCY-COMPENSATED OPERATIONAL AMPLIFIER 469(10)
APPENDIX 2 LM301 OPERATIONAL AMPLIFIER 479(7)
APPENDIX 3 LM311 VOLTAGE COMPARATOR 486(7)
APPENDIX 4 LM117 3-TERMINAL ADJUSTABLE REGULATOR 493(6)
ANSWERS TO SELECTED ODD-NUMBERED PROBLEMS 499(6)
BIBLIOGRAPHY 505(2)
INDEX 507

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program