did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780387226590

Optoelectronic Devices

by
  • ISBN13:

    9780387226590

  • ISBN10:

    0387226591

  • Format: Hardcover
  • Copyright: 2005-01-20
  • Publisher: Springer Verlag
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $299.99 Save up to $192.33
  • Digital
    $233.27
    Add to Cart

    DURATION
    PRICE

Supplemental Materials

What is included with this book?

Summary

Optoelectronic devices transform electrical signals into optical signals (and vice versa) by utilizing the interaction of electrons and light. Advanced software tools for the design and analysis of such devices have been developed in recent years. However, the large variety of materials, devices, physical mechanisms, and modeling approaches often makes it difficult to select appropriate theoretical models or software packages. This book presents a review of devices and advanced simulation approaches written by leading researchers and software developers. It is intended for scientists and device engineers in optoelectronics who are interested in using advanced software tools. Each chapter includes the theoretical background as well as practical simulation results that help the reader to better understand internal device physics. Real-world devices such as edge-emitting or surface-emitting laser diodes, light-emitting diodes, solar cells, photodetectors, and integrated optoelectronic circuits are investigated. The software packages described in the book are available to the public, on a commercial or noncommercial basis, so that the interested reader is quickly able to perform similar simulations.

Table of Contents

1 Gain and Absorption: Many-Body Effects
S.W. Koch, J. Hader, A. Thränhardt, J.V. Moloney
1(26)
1.1 Introduction
1(1)
1.2 Theory
2(5)
1.3 Simplified Models
7(11)
1.3.1 General Features; Single-Particle Gain and Absorption
7(3)
1.3.2 Fair Approximations
10(3)
1.3.3 Poor Approximations
13(5)
1.4 Commercial Applications
18(5)
1.4.1 Gain Tables
18(1)
1.4.2 On-Wafer Device Testing
19(4)
1.5 Carrier Dynamics
23(1)
References
24(3)
2 Fabry-Perot Lasers: Temperature and Many-Body Effects
B. Grote, E.K. Heller, R. Scarmozzino, J. Hader, J.V. Moloney, S.W. Koch
27(36)
2.1 Introduction
27(4)
2.2 Theory
31(10)
2.2.1 Transport
31(7)
2.2.2 Optics
38(1)
2.2.3 Gain
39(2)
2.3 Temperature Sensitivity of InGaAsP Semiconductor Multi-Quantum Well Lasers
41(17)
2.3.1 Laser Structure
42(1)
2.3.2 Sample Characterization
42(2)
2.3.3 Gain Spectra
44(3)
2.3.4 Light-Current Characteristics and Model Calibration
47(6)
2.3.5 Self-Heating
53(5)
2.4 Summary
58(1)
References
59(4)
3 Fabry-Perot Lasers: Thermodynamics-Based Modeling
U. Bandelow, H. Gajewski, and R. Hünlich
63(24)
3.1 Introduction
63(1)
3.2 Basic Equations
64(3)
3.2.1 Poisson Equation
64(1)
3.2.2 Transport Equations
64(1)
3.2.3 State Equations
65(1)
3.2.4 Optics
65(2)
3.3 Heating
67(7)
3.3.1 Free Energy, Entropy, Energy
67(2)
3.3.2 Current Densities
69(1)
3.3.3 Heat Equation
70(2)
3.3.4 Entropy Balance
72(2)
3.4 Boundary Conditions
74(1)
3.5 Discretization
75(3)
3.5.1 Time Discretization
75(1)
3.5.2 Space Discretization
75(1)
3.5.3 Discretization of the Currents
76(2)
3.6 Solution of the Discretized Equations
78(1)
3.6.1 Decoupling, Linearization
78(1)
3.6.2 Solution of Linear Algebraic Equations
78(1)
3.7 Example
78(5)
3.7.1 Stationary Characteristics
79(3)
3.7.2 Modulation Response
82(1)
3.8 Conclusion
83(1)
A Temperature Dependence of Model Parameters
84(1)
References
85(2)
4 Distributed Feedback Lasers: Quasi-3D Static and Dynamic Model
X. Li
87(34)
4.1 Introduction
87(2)
4.2 Governing Equations
89(9)
4.2.1 Optical Wave Equations
89(4)
4.2.2 Carrier Transport Equations
93(2)
4.2.3 Optical Gain Model
95(2)
4.2.4 Thermal Diffusion Equation
97(1)
4.3 Implementation
98(8)
4.3.1 General Approach
98(5)
4.3.2 Solver for Optical Wave Equations
103(1)
4.3.3 Solver for Carrier Transport Equations
104(1)
4.3.4 Solver for Optical Gain Model
104(1)
4.3.5 Solver for Thermal Diffusion Equation
104(2)
4.4 Model Validation
106(1)
4.5 Model Comparison and Application
107(10)
4.5.1 Comparison among Different Models
107(1)
4.5.2 1.3-μm InAIGaAs/InP BH SL-MQW DFB Laser Diode
108(2)
4.5.3 1.55-μm InGaAsP/InP RW SL-MQW DFB Laser Diode
110(7)
4.6 Summary
117(1)
References
117(4)
5 Multisection Lasers: Longitudinal Modes and their Dynamics
M. Radziunas, H.-J. Wünsche
121(30)
5.1 Introduction
121(1)
5.2 Traveling Wave Model
122(1)
5.3 Model Details and Parameters
123(3)
5.3.1 Model Details
123(2)
5.3.2 Parameters
125(1)
5.4 Simulation of a Passive Dispersive Reflector Laser
126(3)
5.5 The Concept of Instantaneous Optical Modes
129(2)
5.6 Mode Expansion of the Optical Field
131(2)
5.7 Driving Forces of Mode Dynamics
133(1)
5.8 Mode-Beating Pulsations in a PhaseCOMB Laser
134(5)
5.8.1 Simulation
135(1)
5.8.2 Mode Decomposition
135(2)
5.8.3 Spatio-temporal Properties of Mode-beating Self-pulsations
137(2)
5.9 Phase Control of Mode-beating Pulsations
139(3)
5.9.1 Simulation of Phase Tuning
139(1)
5.9.2 Mode Analysis
139(1)
5.9.3 Regimes of Operation
140(1)
5.9.4 Bifurcations
140(2)
5.10 Conclusion
142(1)
A Numerical Methods
142(7)
A.1 Numerical Integration of Model Equations
142(2)
A.2 Computation of Modes
144(3)
A.3 Mode Decomposition
147(2)
References
149(2)
6 Wavelength Tunable Lasers: Time-Domain Model for SG-DBR Lasers
D.F.G. Gallagher
151(34)
6.1 The Time-Domain Traveling Wave Model
151(8)
6.1.1 Gain Spectrum
153(2)
6.1.2 Noise Spectrum
155(1)
6.1.3 Carrier Equation
155(1)
6.1.4 Carrier Acceleration
156(1)
6.1.5 Extension to Two and Three Dimensions
156(2)
6.1.6 Advantages of the TDTW Method
158(1)
6.1.7 Limitations of the TDTW Method
159(1)
6.2 The Sampled-Grating DBR Laser
159(19)
6.2.1 Principles
159(4)
6.2.2 Reflection Coefficient
163(1)
6.2.3 The Three-section SG-DBR Laser
164(2)
6.2.4 The Four-section SG-DBR Laser
166(3)
6.2.5 Results
169(9)
6.3 The Digital-Supermode DBR Laser
178(4)
6.3.1 Principle of Operation
178(1)
6.3.2 Simulations
179(3)
6.4 Conclusions
182(2)
References
184(1)
7 Monolithic Mode-Locked Semiconductor Lasers
E.A. Avrutin, V. Nikolaev, D. Gallagher
185(32)
7.1 Background and General Considerations
185(2)
7.2 Modeling Requirements for Specific Laser Designs and Applications
187(2)
7.3 Overview of Dynamic Modeling Approaches
189(11)
7.3.1 Time-Domain Lumped Models
189(3)
7.3.2 Distributed Time-Domain Models
192(6)
7.3.3 Static or Dynamic Modal Analysis
198(2)
7.4 Example: Mode-Locked Lasers for WDM and OTDM Applications
200(10)
7.4.1 Background
200(1)
7.4.2 Choice of Modeling Approach
200(1)
7.4.3 Parameter Ranges of Dynamic Regimes: The Background
200(2)
7.4.4 Choice of Cavity Design: All-Active and Active/Passive, Fabry-Perot and DBR Lasers
202(1)
7.4.5 Passive Mode Locking
203(4)
7.4.6 Hybrid Mode Locking
207(3)
7.5 Modeling Semiconductor Parameters: The Absorber Relaxation Time
210(3)
7.6 Directions for Future Work
213(1)
7.7 Summary
214(1)
References
214(3)
8 Vertical-Cavity Surface-Emitting Lasers: Single-Mode Control and Self-Heating Effects
M. Streiff, W. Fichtner, A. Witzig
217(32)
8.1 VCSEL Device Structure
217(4)
8.2 Device Simulator
221(9)
8.2.1 Optical Model
221(1)
8.2.2 Electrothermal Model
222(4)
8.2.3 Optical Gain and Loss
226(1)
8.2.4 Simulator Implementation
227(3)
8.3 Design Tutorial
230(15)
8.3.1 Single-Mode Control in VCSEL Devices
231(1)
8.3.2 VCSEL Optical Modes
232(6)
8.3.3 Coupled Electrothermo-Optical Simulation
238(4)
8.3.4 Single-Mode Optimization Using Metallic Absorbers and Anti-Resonant Structures
242(3)
8.4 Conclusions
245(1)
References
246(3)
9 Vertical-Cavity Surface-Emitting Lasers: High-Speed Performance and Analysis
J.S. Gustavsson, J. Bengtsson. A. Larsson
249(44)
9.1 Introduction to VCSELs
249(2)
9.2 Important Characteristics of VCSELs
251(4)
9.2.1 Resonance and Damping: Modulation Bandwidth
251(2)
9.2.2 Nonlinearity
253(1)
9.2.3 Noise
254(1)
9.3 VCSEL Model
255(15)
9.3.1 Current Transport
255(4)
9.3.2 Heat Transport
259(2)
9.3.3 Optical Fields
261(4)
9.3.4 Material Gain
265(1)
9.3.5 Noise
265(3)
9.3.6 Iterative Procedures
268(2)
9.4 Simulation Example: Fundamental-Mode-Stabilized VCSELs
270(20)
9.4.1 Surface Relief Technique
271(4)
9.4.2 Device Structure
275(1)
9.4.3 Simulation Results
276(14)
9.5 Conclusion
290(1)
References
291(2)
10 GaN-based Light-Emitting Diodes
J. Piprek, S. Li
293(20)
10.1 Introduction
293(1)
10.2 Device Structure
293(2)
10.3 Models and Parameters
295(11)
10.3.1 Wurtzite Energy Band Structure
295(3)
10.3.2 Carrier Transport
298(4)
10.3.3 Heat Generation and Dissipation
302(1)
10.3.4 Spontaneous Photon Emission
303(1)
10.3.5 Ray Tracing
304(2)
10.4 Results and Discussion
306(5)
10.4.1 Internal Device Analysis
306(2)
10.4.2 External Device Characteristics
308(3)
10.5 Summary
311(1)
References
311(2)
11 Silicon Solar Cells
P.P. Altermatt
313(30)
11.1 Operating Principles of Solar Cells
313(2)
11.2 Basic Modeling Technique
315(3)
11.3 Techniques for Full-Scale Modeling
318(1)
11.4 Derivation of Silicon Material Parameters
319(8)
11.5 Evaluating Recombination Losses
327(3)
11.6 Modeling the Internal Operation of Cells
330(4)
11.7 Deriving Design Rules for Minimizing Resistive Losses
334(5)
References
339(4)
12 Charge-Coupled Devices
C.J. Wordelm,an, E.K. Banghart
343(38)
12.1 Introduction
343(1)
12.2 Background
344(4)
12.2.1 Principles of Operation of CCDs
344(1)
12.2.2 CCD Architectures
345(3)
12.3 Models and Methods
348(5)
12.3.1 Process Models
349(1)
12.3.2 Device Models
349(3)
12.3.3 Solution Methods
352(1)
12.4 Charge Capacity
353(4)
12.5 Charge Transfer
357(7)
12.5.1 Charge Transport Mechanisms
359(5)
12.6 Charge Blooming
364(6)
12.7 Dark Current
370(3)
12.8 Charge Trapping
373(4)
12.9 Summary
377(1)
A Example Distribution
377(1)
References
378(3)
13 Infrared HgCdTe Optical Detectors
G.R. Jones. R.J. Jones. W. French
381(24)
13.1 Introduction
381(1)
13.2 Photon Detection
381(2)
13.3 Summary of Simulation Tools
383(6)
13.3.1 Introduction
383(1)
13.3.2 Fundamentals of Device Simulation
384(3)
13.3.3 Carrier Generation and Recombination Mechanisms
387(1)
13.3.4 Shockley-Read-Hall Recombination
387(1)
13.3.5 Auger Recombination
388(1)
13.3.6 Recombination Through Photon Emission
388(1)
13.4 Optoelectronic Simulation
389(2)
13.4.1 Optical Beam Characteristics
389(1)
13.4.2 Light Absorption and Photogeneration
390(1)
13.5 Device Simulation
391(9)
13.5.1 Material Parameters
391(2)
13.5.2 Device Structure
393(2)
13.5.3 Cross Talk Considerations
395(1)
13.5.4 Photogeneration and Spectral Response
396(2)
13.5.5 Recombination Studies
398(2)
13.6 Temperature Studies
400(2)
13.7 Variation of Composition
402(1)
13.8 Conclusion
402(1)
References
403(2)
14 Monolithic Wavelength Converters: Many-Body Effects and Saturation Analysis
J. Piprek, S. Li, P. Mensz, J. Hader
405(22)
14.1 Introduction
405(1)
14.2 Device Structure
405(1)
14.3 General Device Physics
406(9)
14.3.1 Optical Waveguiding
406(4)
14.3.2 Quantum Well Active Region
410(4)
14.3.3 Carrier Transport
414(1)
14.4 Simulation Results
415(10)
14.4.1 Amplifier
416(4)
14.4.2 Photodetector
420(2)
14.4.3 Sampled-Grating DBR Laser
422(3)
14.5 Summary
425(1)
References
425(2)
15 Active Photonic Integrated Circuits
A.J. Lowery
427(22)
15.1 Introduction
427(1)
15.2 Fundamental Requirements of a Simulator
428(5)
15.2.1 Single-Mode Interfaces
428(1)
15.2.2 Backward-Propagating Waves
428(1)
15.2.3 Nonlinearities
429(1)
15.2.4 Optical Time Delays
430(1)
15.2.5 Time Domain versus Frequency Domain
430(1)
15.2.6 Transmission Line Laser Models
431(2)
15.3 The Simulation Environment
433(1)
15.4 Simulation Example
434(12)
15.4.1 Phase Discriminator
435(2)
15.4.2 Internal Clock Source
437(1)
15.4.3 External Clock Source
438(2)
15.4.4 Phase Locking the Clock Sources
440(3)
15.4.5 Optical AND Gate
443(3)
15.4.6 Open Design Issues
446(1)
15.5 Conclusions
446(1)
References
447(2)
Index 449

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program