did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780126437324

The Organic Chemistry of Drug Design and Drug Action

by
  • ISBN13:

    9780126437324

  • ISBN10:

    0126437327

  • Edition: 2nd
  • Format: Hardcover
  • Copyright: 2004-01-12
  • Publisher: Elsevier Science
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $106.00
  • Digital
    $119.25
    Add to Cart

    DURATION
    PRICE

Supplemental Materials

What is included with this book?

Summary

Standard medicinal texts are organized by classes of drugs with an emphasis on descriptions of their pharmacological effects. This book represents a new approach based on physical organic chemical principles and reaction mechanisms that rationalized drug action and allows the reader to extrapolate to many related classed of drug molecules.

Table of Contents

Preface to the First Edition xv
Preface to the Second Edition xvii
1 Introduction 1(6)
1.1 Medicinal Chemistry Folklore
1(1)
1.2 Discovery of New Drugs
2(1)
1.3 General References
3(1)
1.4 References
4(3)
2 Drug Discovery, Design, and Development 7(114)
2.1 Drug Discovery
8(9)
2.1.A LA Drug Discovery without a Lead
9(2)
A.1 Penicillins
9(1)
A.2 Librium
10(1)
2.1.B Lead Discovery
11(6)
B.1 Random Screening
13(1)
B.2 Nonrandom (or Targeted or Focused) Screening
14(1)
B.3 Drug Metabolism Studies
14(1)
B.4 Clinical Observations
15(1)
B.5 Rational Approaches to Lead Discovery
16(1)
2.2 Lead Modification: Drug Design and Development
17(70)
2.2.A Identification of the Active Part: The Pharmacophore
17(4)
2.2.B Functional Group Modification
21(1)
2.2.C Structure-Activity Relationships
21(3)
2.2.D Privileged Structures and Drug-Like Molecules
24(1)
2.2.E Structure Modifications to Increase Potency and the Therapeutic Index
25(26)
E.1 Homologation
26(1)
E.2 Chain Branching
26(2)
E.3 Ring-Chain Transformations
28(1)
E.4 Bioisosterism
29(5)
E.5 Combinatorial Chemistry
34(10)
a. General Aspects
34(2)
b. Split Synthesis: Peptide Libraries
36(2)
c. Encoding Combinatorial Libraries
38(3)
d. Nonpeptide Libraries
41(3)
E.6 SAR by NMR/SAR by MS
44(3)
E.7 Peptidomimetics
47(4)
2.2.F Structure Modifications to Increase Oral Bioavailability
51(15)
F.1 Electronic Effects: The Hammett Equation
51(2)
F.2 Lipophilicity Effects
53(9)
a. Importance of Lipophilicity
53(2)
b. Measurement of Lipophilicities
55(6)
c. Computerization of Log P Values
61(1)
d. Membrane Lipophilicity
62(1)
F.3 Effects of Ionization on Lipophilicity and Oral Bioavailability
62(3)
F.4 Other Properties that Influence Oral Bioavailability and Ability to Cross the Blood-Brain Barrier
65(1)
2.2.G Quantitative Structure-Activity Relationships
66(12)
G.1 Historical
66(1)
G.2 Steric Effects: The Taft Equation and Other Equations
67(1)
G.3 Methods Used to Correlate Physicochemical Parameters with Biological Activity
68(7)
a. Hansch Analysis: A Linear Multiple Regression Analysis
68(2)
b. Free and Wilson or de novo Method
70(1)
c. Enhancement Factor
71(1)
d. Manual Stepwise Methods: Topliss Operational Schemes and Others
71(2)
e. Batch Selection Methods: Batchwise Topliss Operational Scheme, Cluster Analysis, and Others
73(2)
G.4 Computer-Based Methods of QSAR Related to Receptor Binding: 3D-QSAR
75(3)
2.2.H Molecular Graphics-Based Drug Design
78(8)
2.2.I Epilogue
86(1)
2.3 General References
87(13)
2.4 Problems
100(5)
2.5 References
105(16)
3 Receptors 121(52)
3.1 Introduction
122(1)
3.2 Drug-Receptor Interactions
123(42)
3.2.A General Considerations
123(1)
3.2.B Interactions (Forces) Involved in the Drug-Receptor Complex
124(7)
B.1 Covalent Bonds
125(1)
B.2 Ionic (or Electrostatic) Interactions
125(1)
B.3 Ion-Dipole and Dipole-Dipole Interactions
125(1)
B.4 Hydrogen Bonds
125(2)
B.5 Charge-Transfer Complexes
127(2)
B.6 Hydrophobic Interactions
129(1)
B.7 Van der Waals or London Dispersion Forces
129(1)
B.8 Conclusion
130(1)
3.2.C Determination of Drug-Receptor Interactions
131(6)
3.2.D Theories for Drug-Receptor Interactions
137(5)
D.1 Occupancy Theory
137(2)
D.2 Rate Theory
139(1)
D.3 Induced-Fit Theory
139(1)
D.4 Macromolecular Perturbation Theory
139(1)
D.5 Activation-Aggregation Theory
140(1)
D.6 The Two-State (Multistate) Model of Receptor Activation
141(1)
3.2.E Topographical and Stereochemical Considerations
142(16)
E.1 Spatial Arrangement of Atoms
142(1)
E.2 Drug and Receptor Chirality
143(8)
E.3 Geometric Isomers (Diastereomers)
151(1)
E.4 Conformational Isomers
152(6)
E.5 Ring Topology
158(1)
3.2.F Ion Channel Blockers
158(1)
3.2.G Case History of Rational Drug Design of a Receptor Antagonist: Cimetidine
159(6)
3.3 General References
165(1)
3.4 Problems
166(2)
3.5 References
168(5)
4 Enzymes 173(54)
4.1 Enzymes as Catalysts
174(5)
4.1.A What Are Enzymes?
174(1)
4.1.B How Do Enzymes Work?
174(5)
B.1 Specificity of Enzyme-Catalyzed Reactions
176(2)
a. Binding Specificity
176(1)
b. Reaction Specificity
177(1)
B.2 Rate Acceleration
178(1)
4.2 Mechanisms of Enzyme Catalysis
179(9)
4.2.A Approximation
179(2)
4.2.B Covalent Catalysis
181(1)
4.2.C General Acid-Base Catalysis
182(2)
4.2.D Electrostatic Catalysis
184(1)
4.2.E Desolvation
185(1)
4.2.F Strain or Distortion
185(1)
4.2.G Example of the Mechanisms of Enzyme Catalysis
186(2)
4.3 Coenzyme Catalysis
188(28)
4.3.A Pyridoxal 5'-Phosphate (PLP)
188(12)
A.1 Racemases
194(1)
A.2 Decarboxylases
195(1)
A.3 Aminotransferases (Formerly Transaminases)
195(5)
A.4 PLP-Dependent ß-Elimination
200(1)
4.3.B Tetrahydrofolate and Pyridine Nucleotides
200(5)
4.3.C Flavin
205(7)
C.1 Two-Electron (Carbanion) Mechanism
209(1)
C.2 Carbanion Followed by Two One-Electron Transfers
209(1)
C.3 One-Electron Mechanism
210(1)
C.4 Hydride Mechanism
210(2)
4.3.D Heme
212(2)
4.3.E Adenosine Triphosphate and Coenzyme A
214(2)
4.4 Enzyme Therapy
216(1)
4.5 General References
217(1)
4.6 Problems
218(4)
4.7 References
222(5)
5 Enzyme Inhibition and Inactivation 227(96)
5.1 Why Inhibit an Enzyme?
229(2)
5.2 Drug Resistance
231(8)
52.A What Is Drug Resistance?
231(1)
52.B Mechanisms of Drug Resistance
232(7)
B.1 Altered Drug Uptake
232(1)
B.2 Overproduction of the Target Enzyme
232(1)
B.3 Altered Target Enzyme (or Site of Action)
232(3)
B.4 Production of a Drug-Destroying Enzyme
235(3)
B.5 Deletion of a Prodrug-Activating Enzyme
238(1)
B.6 Overproduction of the Substrate for the Target Enzyme
239(1)
B.7 New Pathway for Formation of the Product of the Target Enzyme
239(1)
B.8 Efflux Pumps
239(1)
5.3 Drug Synergism (Drug Combination)
239(2)
5.3.A What Is Drug Synergism?
239(1)
5.3.B Mechanisms of Drug Synergism
239(2)
B.1 Inhibition of a Drug-Destroying Enzyme
239(1)
B.2 Sequential Blocking
240(1)
B.3 Inhibition of Enzymes in Different Metabolic Pathways
240(1)
B.4 Efflux Pump Inhibitors
240(1)
B.5 Use of Multiple Drugs for the Same Target
240(1)
5.4 Reversible Enzyme Inhibitors
241(33)
5.4.A Mechanism of Reversible Inhibition
241(1)
5.4.B Selected Examples of Competitive Reversible Inhibitor Drugs
242(16)
B.1 Simple Competitive Inhibition: Captopril, Enalapril, Lisinopril, and Other Antihypertensive Drugs
242(12)
a. Humoral Mechanism for Hypertension
243(1)
b. Lead Discovery
243(1)
c. Lead Modification and Mechanism of Action
244(6)
d. Dual-Acting Drugs: Dual-Acting Enzyme Inhibitors
250(4)
B.2 Alternative Substrate Inhibition: Sulfonamide Antibacterial Agents (Sulfa Drugs)
254(4)
a. Lead Discovery
254(1)
b. Lead Modification
255(1)
c. Mechanism of Action
255(2)
d. Drug Resistance
257(1)
e. Drug Synergism
257(1)
5.4.C Transition State Analogs and Multisubstrate Analogs
258(4)
C.1 Theoretical Basis
258(1)
C.2 Transition State Analogs
259(3)
a. Enalaprilat
259(1)
b. Pentostatin
259(3)
c. Multisubstrate Analogs
262(1)
5.4.D Slow, Tight-Binding Inhibitors
262(6)
D.1 Theoretical Basis
262(1)
D.2 Enalaprilat
263(1)
D.3 Lovastatin and Simvastatin, Antihypercholesterolemic Drugs
263(4)
a. Cholesterol and Its Effects
263(1)
b. Lead Discovery
263(1)
c. Mechanism of Action
264(1)
d. Lead Modification
265(2)
D.4 Peptidyl Trifluoromethyl Ketone Inhibitors of Human Leukocyte Elastase
267(1)
5.4.E Case History of Rational Drug Design of an Enzyme Inhibitor: Ritonavir
268(6)
E.1 Lead Discovery
268(1)
E.2 Lead Modification
269(5)
5.5 Irreversible Enzyme Inhibitors
274(28)
5.5.A Potential of Irreversible Inhibition
274(1)
5.5.B Affinity Labeling Agents
275(10)
B.1 Mechanism of Action
275(2)
B.2 Selected Affinity Labeling Agents
277(8)
a. Penicillins and Cephalosporins/Cephamycins
277(3)
b. Aspirin
280(5)
5.5.C Mechanism-Based Enzyme Inactivators
285(39)
C.1 Theoretical Aspects
285(1)
C.2 Potential Advantages in Drug Design Relative to Affinity Labeling Agents
286(1)
C.3 Selected Examples of Mechanism-Based Enzyme Inactivators
287(57)
a. Vigabatrin, an Anticonvulsant Drug
287(3)
b. Eflornithine, an Antiprotozoal Drug and Beyond
290(2)
c. Tranylcypromine, an Antidepressant Drug
292(3)
d. Selegiline (L-Deprenyl), an Antiparkinsonian Drug
295(3)
e. 5-Fluoro-2'-Deoxyuridylate, Floxuridine, and 5-Fluorouracil, Antitumor Drugs
298(4)
5.6 General References
302(1)
5.7 Problems
303(4)
5.8 References
307(16)
6 DNA-Interactive Agents 323(82)
6.1 Introduction
324(4)
6.1.A Basis for DNA-Interactive Drugs
324(1)
6.1.B Toxicity of DNA-Interactive Drugs
325(2)
6.1.C Combination Chemotherapy
327(1)
6.1.D Drug Interactions
327(1)
6.1.E Drug Resistance
327(1)
6.2 DNA Structure and Properties
328(14)
6.2.A Basis for the Structure of DNA
328(4)
6.2.B Base Tautomerization
332(2)
6.2.C DNA Shapes
334(7)
6.2.D DNA Conformations
341(1)
6.3 Classes of Drugs That Interact with DNA
342(44)
6.3.A Reversible DNA Binders
344(9)
A.1 External Electrostatic Binding
345(1)
A.2 Groove Binding
345(1)
A.3 Intercalation and Topoisomerase-Induced DNA Damage
346(7)
a. Amsacrine, an Acridine Analog
349(1)
b. Dactinomycin, the Parent Actinomycin Analog
350(1)
c. Doxorubicin (Adriamycin) and Daunorubicin (Daunomycin), Anthracycline Antitumor Antibiotics
351(1)
d. Bisintercalating Agents
352(1)
6.3.B DNA Alkylators
353(58)
B.1 Nitrogen Mustards
354(4)
a. Lead Discovery
354(1)
b. Chemistry of Alkylating Agents
354(2)
c. Lead Modification
356(2)
d. Drug Resistance
358(1)
B.2 Ethylenimines
358(1)
B.3 Methanesulfonates
358(1)
B.4 (+)-CC-1065 and Duocarmycins
359(2)
B.5 Metabolically Activated Alkylating Agents
361(7)
a. Nitrosoureas
361(2)
b. Triazene Antitumor Drugs
363(1)
c. Mitomycin C
364(2)
d. Leinamycin
366(2)
6.3.C DNA Strand Breakers
368(50)
C.1 Anthracycline Antitumor Antibiotics
369(2)
C.2 Bleomycin
371(6)
C.3 Tirapazamine
377(1)
C.4 Enediyne Antitumor Antibiotics
378(1)
a. Esperamicins and Calicheamicins
380(1)
b. Dynemicin A
381(1)
c. Neocarzinostatin (Zinostatin)
381(5)
C.5 Sequence Specificity for DNA Strand Scission
386(1)
6.4 Epilogue to Receptor-Interactive Agents
386(1)
6.5 General References
386(1)
6.6 Problems
387(2)
6.7 References
389(16)
7 Drug Metabolism 405(92)
7.1 Introduction
406(2)
7.2 Synthesis of Radioactive Compounds
408(3)
7.3 Analytical Methods in Drug Metabolism
411(4)
7.3.A Isolation
412(1)
7.3.B Separation
412(1)
7.3.C Identification
413(1)
7.3.D Quantification
414(1)
7.4 Pathways for Drug Deactivation and Elimination
415(58)
7.4.A Introduction
415(3)
7.4.B Phase I Transformations
418(38)
B.1 Oxidative Reactions
418(30)
a. Aromatic Hydroxylation
420(7)
b. Alkene Epoxidation
427(1)
c. Oxidations of Carbons Adjacent to sp2 Centers
428(2)
d. Oxidation at Aliphatic and Alicyclic Carbon Atoms
430(1)
e. Oxidations of Carbon-Nitrogen Systems
430(13)
f. Oxidations of Carbon-Oxygen Systems
443(1)
g. Oxidations of Carbon-Sulfur Systems
444(2)
h. Other Oxidative Reactions
446(1)
i. Alcohol and Aldehyde Oxidations
447(1)
B.2 Reductive Reactions
448(5)
a. Carbonyl Reduction
448(2)
b. Nitro Reduction
450(1)
c. Azo Reduction
451(1)
d. Azido Reduction
452(1)
e. Tertiary Amine Oxide Reduction
452(1)
f. Reductive Dehalogenation
453(1)
B.3 Carboxylation Reaction
453(1)
B.4 Hydrolytic Reactions
454(2)
7.4.C Phase II Transformations: Conjugation Reactions
456(15)
C.1 Introduction
456(1)
C.2 Glucuronic Acid Conjugation
456(4)
C.3 Sulfate Conjugation
460(2)
C.4 Amino Acid Conjugation
462(2)
C.5 Glutathione Conjugation
464(2)
C.6 Water Conjugation
466(1)
C.7 Acetyl Conjugation
466(2)
C.8 Fatty Acid and Cholesterol Conjugation
468(1)
C.9 Methyl Conjugation
469(2)
7.4.D Hard and Soft Drugs; Antedrugs
471(2)
7.5 General References
473(2)
7.6 Problems
475(4)
7.7 References
479(18)
8 Prodrugs and Drug Delivery Systems 497(62)
8.1 Enzyme Activation of Drugs
498(3)
8.1.A Utility of Prodrugs
498(2)
A.1 Aqueous Solubility
499(1)
A.2 Absorption and Distribution
499(1)
A.3 Site Specificity
499(1)
A.4 Instability
499(1)
A.5 Prolonged Release
499(1)
A.6 Toxicity
499(1)
A.7 Poor Patient Acceptability
499(1)
A.8 Formulation Problems
500(1)
8.1.B Types of Prodrugs
500(1)
8.2 Mechanisms of Drug Activation
501(45)
8.2.A Carrier-Linked Prodrugs
501(25)
A.1 Carrier Linkages for Various Functional Groups
501(4)
a. Alcohols, Carboxylic Acids, and Related Groups
501(2)
b. Amines
503(1)
c. Sulfonamides
504(1)
d. Carbonyl Compounds
505(1)
A.2 Examples of Carrier-Linked Bipartate Prodrugs
505(11)
a. Prodrugs for Increased Water Solubility
505(2)
b. Prodrugs for Improved Absorption and Distribution
507(1)
c. Prodrugs for Site Specificity
507(5)
d. Prodrugs for Stability
512(1)
e. Prodrugs for Slow and Prolonged Release
513(1)
f. Prodrugs to Minimize Toxicity
514(1)
g. Prodrugs to Encourage Patient Acceptance
514(1)
h. Prodrugs to Eliminate Formulation Problems
515(1)
A.3 Macromolecular Drug Carrier Systems
516(4)
a. General Strategy
516(1)
b. Synthetic Polymers
517(1)
c. Poly (a-amino acids)
517(2)
d. Other Macromolecular Supports
519(1)
A.4 Tripartate Prodrugs
520(5)
A.5 Mutual Prodrugs
525(1)
8.2.B Bioprecursor Prodrugs
526(20)
B.1 Origins
526(1)
B.2 Proton Activation: An Abbreviated Case History of the Discovery of Omeprazole
527(1)
B.3 Hydrolytic Activation
528(2)
B.4 Elimination Activation
530(1)
B.5 Oxidative Activation
530(7)
a. N- and O-Dealkylations
530(1)
b. Oxidative Deamination
530(2)
c. N-Oxidation
532(3)
d. S-Oxidation
535(1)
e. Aromatic Hydroxylation
536(1)
f. Other Oxidations
536(1)
B.6 Reductive Activation
537(3)
a. Azo Reduction
537(1)
b. Azido Reduction
538(1)
c. Sulfoxide Reduction
538(1)
d. Disulfide Reduction
538(1)
e. Nitro Reduction
539(1)
B.7 Nucleotide Activation
540(1)
B.8 Phosphorylation Activation
541(2)
B.9 Sulfation Activation
543(1)
B.10 Decarboxylation Activation
544(2)
8.3 General References
546(1)
8.4 Problems
547(2)
8.5 References
549(10)
Appendix Answers to Chapter Problems 559(34)
Index 593

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program