CART

(0) items

Physical Chemistry : Quantum Chemistry and Molecular Interactions,9780321814166
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Physical Chemistry : Quantum Chemistry and Molecular Interactions

by
Edition:
1st
ISBN13:

9780321814166

ISBN10:
0321814169
Format:
Hardcover
Pub. Date:
1/4/2013
Publisher(s):
Prentice Hall
List Price: $100.20

Rent Textbook

(Recommended)
 
Term
Due
Price
$40.08

Buy Used Textbook

Usually Ships in 2-3 Business Days
U9780321814166
$70.14

Buy New Textbook

Currently Available, Usually Ships in 24-48 Hours
N9780321814166
$82.58

eTextbook

Downloadable Offline Access
  • Apple Devices
  • Android Devices
  • Windows Devices
  • Mac Devices

 
Duration
Price
$44.69
More New and Used
from Private Sellers
Starting at $52.71
See Prices

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from eCampus.com can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the 1st edition with a publication date of 1/4/2013.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Used copy of this book is not guaranteed to inclue any supplemental materials. Typically, only the book itself is included.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.

Summary

Fostering an intuitive understanding of chemistry, Physical Chemistry: Quantum Chemistry and Molecular Interactions  presents the structure and unity of the theoretical framework of modern chemistry in a progression from the single atom to the bulk limit. Employing an engaging and somewhat informal tone, this new text delivers a superior presentation of rigorous mathematical derivations, thermodynamics, and quantum theory and mechanics in a manner that is accessible and applicable to diverse readers.

 

 

 

Author Biography

Andrew Cooksy is a chemistry professor at San Diego State University, where he teaches courses in physical and general chemistry and carries out research on the spectroscopy, kinetics, and computational chemistry of reactive intermediates in combustion and interstellar processes. He attended the Washington, D.C. public schools before receiving his undergraduate degree in chemistry and physics from Harvard College and his Ph.D. in chemistry from the University of California at Berkeley.

Table of Contents

Quantum Chemistry and Molecular Interactions

A Introduction: Tools from Math and Physics
A.1 Mathematics
A.2 Classical physics

 

I Atomic Structure

1 Classical and Quantum Mechanics
1.1 Introduction to the Text
1.2 The Classical World
1.3 The Quantum World
1.4 One-Electron Atoms
1.5 Merging the Classical and Quantum Worlds

2 The Schrödinger Equation
2.1 Mathematical Tools of Quantum Mechanics
2.2 Fundamental Examples

3 One-Electron Atoms
3.1 Solving the One-Electron Atom Schrödinger Equation
3.2 The One-Electron Atom Orbital Wavefunctions
3.3 Electric Dipole Interactions
3.4 Magnetic Dipole Interactions

4 Many-Electron Atoms
4.1 Many-Electron Spatial Wavefunctions
4.2 Approximate Solution to the Schrodinger Equation
4.3 Spin Wavefunctions and Symmetrization
4.4 Vector Model of the Many-Electron Atom
4.5 Periodicity of the Elements
4.6 Atomic Structure: The Key to Chemistry

 

II Molecular Structure

5 Chemical Bonds
5.1 The Molecular Hamiltonian
5.2 The Molecular Wavefunction
5.3 Covalent Bonds in Polyatomic Molecules
5.4 Non-Covalent Bonds
5.5 Nuclear Magnetic Resonance Spectroscopy

6 Molecular Symmetry
6.1 Group Theory
6.2 Symmetry Representations for Wavefunctions
6.3 Selection Rules
6.4 Selected Applications

7 Electronic States of Molecules
7.1 Molecular Orbital Configurations
7.2 Electronic States
7.3 Computational Methods for Molecules
7.4 Energetic Processes

8 Vibrational States of Molecules
8.1 The Vibrational Schrödinger Equation
8.2 Vibrational Energy Levels in Diatomics
8.3 Vibrations in Polyatomics
8.4 Spectroscopy of Vibrational States

9 Rotational States of Molecules
9.1 Rotations in Diatomics
9.2 Rotations in Polyatomics
9.3 Spectroscopy of Rotational States

 

III Molecular Interactions
10 Intermolecular Forces
10.1 Intermolecular Potential Energy
10.2 Molecular Collisions

11 Nanoscale Chemical Structure
11.1 The Nano Scale
11.2 Clusters
11.3 Macromolecules

12 The Structure of Liquids
12.1 The Qualitative Nature of Liquids
12.2 Weakly Bonded Pure Liquids
12.3 Solvation

13 The Structure of Solids
13.1 Amorphous Solids, Polymers, and Crystals
13.2 Symmetry in Crystals
13.3 Bonding Mechanisms and Properties of Crystals
13.4 Wavefunctions and Energies of Solids

 



Please wait while the item is added to your cart...