did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780470090329

Properties of Group-IV, III-V and II-VI Semiconductors

by
  • ISBN13:

    9780470090329

  • ISBN10:

    0470090324

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2005-04-01
  • Publisher: WILEY
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $382.87 Save up to $0.91
  • Buy New
    $381.96
    Add to Cart Free Shipping Icon Free Shipping

    PRINT ON DEMAND: 2-4 WEEKS. THIS ITEM CANNOT BE CANCELLED OR RETURNED.

Supplemental Materials

What is included with this book?

Summary

Almost all the semiconductors of practical interest are the group-IV, III-V and II-VI semiconductors and the range of technical applications of such semiconductors is extremely wide. The purpose of this book is twofold: * to discuss the key properties of the group-IV, III-V and II-VI semiconductors * to systemize these properties from a solid-state physics aspect The majority of the text is devoted to the description of the lattice structural, thermal, elastic, lattice dynamic, electronic energy-band structural, optical and carrier transport properties of these semiconductors. Some corrective effects and related properties, such as piezoelectric, elastooptic and electrooptic properties, are also discussed. The book contains convenient tables summarizing the various material parameters and the definitions of important semiconductor properties. In addition, graphs are included in order to make the information more quantitative and intuitive. The book is intended not only for semiconductor device engineers, but also physicists and physical chemists, and particularly students specializing in the fields of semiconductor synthesis, crystal growth, semiconductor device physics and technology.

Author Biography

Sadao Adachi is the author of Properties of Group-IV, III-V and II-VI Semiconductors, published by Wiley.

Table of Contents

Series Preface xiii
Preface xv
Acknowledgments/Dedication xvii
1 Structural Properties 1(22)
1.1 Ionicity
1(2)
1.1.1 Definition
1(2)
(a) Phillips ionicity
2(1)
(b) Pauling ionicity
2(1)
(c) Harrison ionicity
2(1)
1.1.2 Ionicity Value
3(1)
1.2 Elemental Isotopic Abundance and Molecular Weight
3(1)
1.2.1 Elemental Isotopic Abundance
3(1)
1.2.2 Molecular Weight
4(1)
1.3 Crystal Structure and Space Group
4(8)
1.3.1 Crystal Structure
4(6)
(a) Diamond, zinc-blende and wurtzite structures
4(3)
(b) Hexagonal and rhombohedral structures
7(2)
(c) Rocksalt structure
9(1)
1.3.2 Space Group
10(2)
1.4 Lattice Constant and Related Parameters
12(2)
1.4.1 Lattice Constant
12(1)
(a) Room-temperature value
12(1)
(b) Near-neighbor distance
12(1)
(c) External perturbation effect
13(1)
1.4.2 Molecular and Crystal Densities
13(1)
1.5 Structural Phase Transitions
14(1)
1.6 Cleavage
15(5)
1.6.1 Cleavage Plane
15(3)
1.6.2 Surface Energy
18(5)
(a) Theoretical value
18(2)
(b) Experimental value
20(1)
References
20(3)
2 Thermal Properties 23(18)
2.1 Melting Point and Related Parameters
23(3)
2.1.1 Phase Diagram
23(1)
2.1.2 Melting Point
23(3)
2.2 Specific Heat
26(2)
2.3 Debye Temperature
28(2)
2.4 Thermal Expansion Coefficient
30(3)
2.5 Thermal Conductivity and Diffusivity
33(6)
2.5.1 Thermal Conductivity
33(6)
2.5.2 Thermal Diffusivity
39(1)
References
39(2)
3 Elastic Properties 41(32)
3.1 Elastic Constant
41(10)
3.1.1 General Remarks
41(1)
3.1.2 Room-temperature Value
42(6)
3.1.3 External Perturbation Effect
48(5)
(a) Temperature effect
48(2)
(b) Pressure effect
50(1)
3.2 Third-order Elastic Constant
51(2)
3.3 Young's Modulus, Poisson's Ratio and Similar Properties
53(9)
3.3.1 Young's Modulus and Poisson's Ratio: Cubic Lattice
53(3)
3.3.2 Bulk Modulus, Shear Modulus and Similar Properties: Cubic Lattice
56(4)
3.3.3 Young's Modulus and Poisson's Ratio: Hexagonal Lattice
60(1)
3.3.4 Bulk Modulus, Shear Modulus and Similar Properties: Hexagonal Lattice
61(1)
3.4 Microhardness
62(6)
3.5 Sound Velocity
68(4)
References
72(1)
4 Lattice Dynamic Properties 73(22)
4.1 Phonon Dispersion Relation
73(7)
4.1.1 Brillouin Zone
73(2)
(a) Face-centered cubic lattice
74(1)
(b) Hexagonal lattice
74(1)
(c) Rhombohedral lattice
75(1)
4.1.2 Phonon Dispersion Curve
75(4)
(a) Cubic lattice
75(2)
(b) Hexagonal lattice
77(2)
4.1.3 Phonon Density of States
79(1)
4.2 Phonon Frequency
80(7)
4.2.1 Room-temperature Value
80(4)
4.2.2 External Perturbation Effect
84(4)
(a) Temperature effect
84(2)
(b) Pressure effect
86(1)
4.3 Mode Grüneisen Parameter
87(1)
4.4 Phonon Deformation Potential
88(4)
4.4.1 Cubic Lattice
88(3)
4.4.2 Hexagonal Lattice
91(1)
References
92(3)
5 Collective Effects and Some Response Characteristics 95(8)
5.1 Piezoelectric and Electromechanical Constants
95(4)
5.1.1 Piezoelectric Constant
95(4)
(a) Piezoelectric stress constant
95(3)
(b) Piezoelectric strain constant
98(1)
5.1.2 Electromechanical Coupling Constant
99(1)
5.2 Fröhlich Coupling Constant
99(2)
References
101(2)
6 Energy-band Structure: Energy-band Gaps 103(44)
6.1 Basic Properties
103(11)
6.1.1 Energy-band Structure
103(8)
(a) Diamond-type semiconductor
104(2)
(b) Zinc-blende-type semiconductor
106(2)
(c) Wurtzite-type semiconductor
108(3)
6.1.2 Electronic Density of States
111(3)
6.2 E0-gap Region
114(16)
6.2.1 Effective Γ-point Hamiltonian
114(1)
6.2.2 Room-temperature Value
115(5)
6.2.3 External Perturbation Effect
120(6)
(a) Temperature effect
120(4)
(b) Pressure effect
124(1)
(c) Temperature and pressure coefficients
124(2)
6.2.4 Doping Effect
126(4)
6.3 Higher-lying Direct Gap
130(7)
6.3.1 Cubic Semiconductor
130(7)
(a) Room-temperature value
130(3)
(b) External perturbation effect
133(4)
6.3.2 Hexagonal and Rhombohedral Semiconductors
137(1)
6.4 Lowest Indirect Gap
137(5)
6.4.1 Room-temperature Value
137(1)
6.4.2 External Perturbation Effect
138(9)
(a) Temperature effect
138(1)
(b) Pressure effect
139(3)
(c) Temperature and pressure coefficients
142(1)
6.5 Conduction-valley Energy Separation
142(1)
6.6 Direct-Indirect-gap Transition Pressure
142(1)
References
143(4)
7 Energy-band Structure: Effective Masses 147(26)
7.1 Electron Effective Mass: Γ Valley
147(11)
7.1.1 General Remarks
147(2)
7.1.2 Numerical Value
149(2)
7.1.3 Polaron Effect
151(1)
7.1.4 External Perturbation and Doping Effects
152(6)
(a) Temperature effect
152(1)
(b) Pressure effect
153(2)
(c) Doping effect
155(3)
7.2 Electron Effective Mass: Satellite Valley
158(1)
7.2.1 Camel's Back Structure
158(1)
7.2.2 Numerical Value
159(1)
7.3 Hole Effective Mass
159(12)
7.3.1 Effective Γ-valence-band Hamiltonian and Luttinger Parameter
159(5)
7.3.2 Numerical Value
164(4)
(a) Cubic semiconductor
164(3)
(b) Hexagonal and rhombohedral semiconductors
167(1)
7.3.3 Polaron Effect
168(2)
7.3.4 External Perturbation and Doping Effects
170(3)
(a) Temperature effect
170(1)
(b) Pressure effect
170(1)
(c) Doping effect
170(1)
References
171(2)
8 Deformation Potentials 173(22)
8.1 Intravalley Deformation Potential: Γ Point
173(10)
8.1.1 Conduction Band
173(2)
8.1.2 Valence Band
175(4)
8.1.3 E0 Gap
179(2)
8.1.4 Optical Phonon Deformation Potential
181(2)
8.2 Intravalley Deformation Potential: High-symmetry Points
183(6)
8.2.1 L Point
183(5)
(a) Hydrostatic and shear deformation potentials: conduction band
183(2)
(b) Optical phonon deformation potential
185(1)
(c) Valence-band deformation potential
186(1)
(d) Hydrostatic and interband deformation potentials: E1 and Δ1 + Δ1 gaps
186(2)
8.2.2 X Point
188(1)
(a) Hydrostatic and shear deformation potentials: conduction band
188(1)
(b) Hydrostatic and interband deformation potentials: E2 gap
189(1)
8.3 Intervalley Deformation Potential
189(3)
8.3.1 General Remarks
189(3)
8.3.2 Numerical Value
192(1)
References
192(3)
9 Electron Affinity and Schottky Barrier Height 195(16)
9.1 Electron Affinity
195(3)
9.1.1 An Overview
195(1)
9.1.2 Numerical Value
196(2)
9.2 Schottky Barrier Height
198(10)
9.2.1 An Ideal Schottky-Mott Contact
198(4)
9.2.2 Case Study: Au/Semiconductor Contact
202(2)
9.2.3 Surface Reconstruction and External Perturbation Effect
204(2)
(a) Surface reconstruction
204(1)
(b) Temperature effect
205(1)
(c) Pressure effect
205(1)
9.2.4 Breakdown Voltage
206(2)
References
208(3)
10 Optical Properties 211(72)
10.1 Summary of Optical Dispersion Relations
211(6)
10.1.1 Dielectric Permittivity
211(2)
10.1.2 Optical Dispersion Relation
213(1)
10.1.3 Optical Sum Rule
214(2)
10.1.4 Optical Spectra
216(1)
10.2 The Reststrahlen Region
217(13)
10.2.1 Static and High-frequency Dielectric Constants
217(5)
(a) Room-temperature value
217(2)
(b) External perturbation effect
219(3)
10.2.2 Reststrahlen Spectra
222(6)
(a) Zinc-blende-type and rocksalt-type semiconductors
222(4)
(b) Hexagonal semiconductor
226(1)
(c) External perturbation effect
227(1)
10.2.3 Multiphonon Optical Absorption Spectra
228(2)
10.3 At or Near the Fundamental Absorption Edge
230(28)
10.3.1 Free-exciton Binding Energy and Related Parameters
230(6)
(a) Exciton states: direct exciton
230(2)
(b) Exciton states: indirect exciton
232(1)
(c) Exciton binding energy and related parameters
233(3)
(d) Spin-exchange interaction constant
236(1)
10.3.2 Refractive Index
236(8)
(a) Theoretical dispersion model
236(4)
(b) Long-wavelength n value: empirical formula
240(1)
(c) External perturbation effect
241(3)
10.3.3 Optical Absorption at the Fundamental Absorption Edge
244(12)
(a) Critical point: definition
244(1)
(b) Free electron-hole pair transition
245(6)
(c) Excitonic transition
251(2)
(d) Experimental
253(3)
10.3.4 Urbach Tail
256(2)
10.4 The Interband Transition Region
258(12)
10.4.1 Model Dielectric Function
258(5)
(a) Fundamental absorption edge
259(1)
(b) E1 and E1 + Δ1 transitions
259(1)
(c) E0', E2 and E1' transitions
260(2)
(d) Plasma and d-band effects
262(1)
10.4.2 Fundamental Optical Spectra
263(5)
(a) Si
263(2)
(b) GaAs
265(1)
(c) w-CdS
265(3)
10.4.3 External Perturbation and Doping Effects
268(2)
(a) Temperature effect
268(1)
(b) Pressure effect
268(1)
(c) Doping effect
269(1)
10.5 Free-carrier Absorption and Related Phenomena
270(8)
10.5.1 Free-carrier Absorption
270(4)
10.5.2 Interconduction-band and Intervalence-band Absorption
274(4)
(a) Interconduction-band absorption
274(1)
(b) Intervalence-band absorption
275(3)
10.5.3 Free-carrier-induced Change in Refractive Index
278(1)
References
278(5)
11 Elasto-optic, Electro-optic and Nonlinear Optical Properties 283(32)
11.1 Elasto-optic Effect
283(8)
11.1.1 Theoretical Expression
283(2)
11.1.2 Experimental Value
285(6)
11.2 Linear Electro-optic Constant
291(4)
11.2.1 Theoretical Expression
291(3)
11.2.2 Experimental Value
294(1)
11.3 Quadratic Electro-optic Constant
295(5)
11.3.1 Theoretical Expression
295(3)
11.3.2 Experimental Value
298(2)
11.4 Franz-Keldysh Effect
300(2)
11.4.1 Theoretical Expression
300(1)
11.4.2 Experimental Value
301(1)
11.5 Nonlinear Optical Constant
302(9)
11.5.1 Second-order Nonlinear Optical Susceptibility
302(6)
11.5.2 Third-order Nonlinear Optical Susceptibility
308(1)
11.5.3 Two-photon Absorption
309(2)
References
311(4)
12 Carrier Transport Properties 315(58)
12.1 Low-field Mobility: Electrons
315(16)
12.1.1 Electron Scattering Mechanism
315(5)
(a) Intervalley scattering
317(1)
(b) Polar optical scattering
317(1)
(c) Nonpolar optical scattering
318(1)
(d) Piezoelectric scattering
318(1)
(e) Deformation potential scattering
318(1)
(f) Ionized impurity scattering
319(1)
(g) Neutral impurity scattering
319(1)
(h) Space-charge scattering
319(1)
(i) Alloy scattering
320(1)
(j) Carrier-carrier scattering
320(1)
12.1.2 Three-valley Model
320(1)
12.1.3 Room-temperature Value
321(3)
12.1.4 External Perturbation and Doping Effects
324(4)
(a) Temperature effect
324(1)
(b) Pressure effect
325(1)
(c) Doping effect
326(2)
12.1.5 Hall Factor
328(3)
12.2 Low-field Mobility: Holes
331(8)
12.2.1 Hole Scattering Mechanism
331(2)
12.2.2 Room-temperature Value
333(1)
12.2.3 External Perturbation and Doping Effects
333(6)
(a) Temperature effect
333(4)
(b) Pressure effect
337(1)
(c) Doping effect
337(2)
12.3 High-field Transport: Electrons
339(10)
12.3.1 Electron Drift Velocity-Field Characteristic
339(8)
12.3.2 Electron Saturation Drift Velocity
347(2)
(a) Temperature dependence
347(1)
(b) LO phonon scattering-limited electron saturation drift velocity
348(1)
12.4 High-field Transport: Holes
349(4)
12.4.1 Hole Drift Velocity-Field Characteristic
349(3)
12.4.2 Hole Saturation Drift Velocity
352(1)
12.5 Minority-carrier Transport: Electrons in p-type Materials
353(6)
12.5.1 Minority-electron Mobility
353(3)
12.5.2 Minority-electron Drift Velocity
356(1)
12.5.3 Minority-electron Lifetime and Diffusion Length
356(3)
12.6 Minority-carrier Transport: Holes in n-type Materials
359(3)
12.6.1 Minority-hole Mobility
359(1)
12.6.2 Minority-hole Lifetime and Diffusion Length
360(2)
12.7 Impact Ionization Coefficient
362(7)
12.7.1 Theoretical Consideration
362(3)
12.7.2 Experimental Value
365(4)
(a) Electric-field dependence
365(1)
(b) Temperature dependence
366(2)
(c) Crystallographic direction dependence
368(1)
References
369(4)
Index 373

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program