did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9783540347620

Quantum Field Theory I

by
  • ISBN13:

    9783540347620

  • ISBN10:

    3540347623

  • Format: Hardcover
  • Copyright: 2006-10-04
  • Publisher: Springer Nature
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $279.99 Save up to $209.45
  • Digital
    $152.83
    Add to Cart

    DURATION
    PRICE

Supplemental Materials

What is included with this book?

Summary

This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction).

Author Biography

Prof. Dr. Dr. h.c. Eberhard Zeidler works at the Max Planck Institute for Mathematics in the Sciences in Leipzig (Germany). In 1996 he was one of the founding directors of this institute. He is a member of the Academy of Natural Scientists Leopoldina. In 2006 he was awarded the "Alfried Krupp Wissenschaftspreis" of the Alfried Krupp von Bohlen und Halbach-Stiftung. The author wrote the following books.(a) E. Zeidler, Nonlinear Functional Analysis and its Applications, Vols. I-IV,Springer Verlag New York, 1984-1988 (third edition 1998).(b) E. Zeidler, Applied Functional Analysis, Vol. 1: Applications to Mathematical Physics, 2nd edition, 1997, Springer Verlag, New York.(c) E. Zeidler, Applied Functional Analysis, Vol. 2: Main Principles and Their Applications, Springer-Verlag, New York, 1995.(d) E. Zeidler, Oxford Users' Guide to Mathematics, Oxford University Press, 2004(translated from German).

Table of Contents

Part I. Introduction
Prologue
1(208)
1. Historical Introduction
21(58)
1.1 The Revolution of Physics
22(5)
1.2 Quantization in a Nutshell
27(33)
1.2.1 Basic Formulas
30(16)
1.2.2 The Fundamental Role of the Harmonic Oscillator in Quantum Field Theory
46(6)
1.2.3 Quantum Fields and Second Quantization
52(5)
1.2.4 The Importance of Functional Integrals
57(3)
1.3 The Role of Göttingen
60(7)
1.4 The Göttingen Tragedy
67(2)
1.5 Highlights in the Sciences
69(6)
1.5.1 The Nobel Prize
69(2)
1.5.2 The Fields Medal in Mathematics
71(1)
1.5.3 The Nevanlinna Prize in Computer Sciences
72(1)
1.5.4 The Wolf Prize in Physics
73(1)
1.5.5 The Wolf Prize in Mathematics
73(2)
1.5.6 The Abel Prize in Mathematics
75(1)
1.6 The Emergence of Physical Mathematics — a New Dimension of Mathematics
75(2)
1.7 The Seven Millennium Prize Problems of the Clay Mathematics Institute
77(2)
2. Phenomenology of the Standard Model for Elementary Particles
79(108)
2.1 The System of Units
80(1)
2.2 Waves in Physics
81(16)
2.2.1 Harmonic Waves
81(1)
2.2.2 Wave Packets
82(2)
2.2.3 Standing Waves
84(1)
2.2.4 Electromagnetic Waves
85(1)
2.2.5 Superposition of Waves and the Fourier Transform
86(3)
2.2.6 Damped Waves, the Laplace Transform, and Dispersion Relations
89(5)
2.2.7 The Response Function, the Feynman Propagator, and Causality
94(3)
2.3 Historical Background
97(30)
2.3.1 Planck's Radiation Law
101(5)
2.3.2 The Boltzmann Statistics and Planck's Quantum Hypothesis
106(3)
2.3.3 Einstein's Theory of Special Relativity
109(2)
2.3.4 Einstein's Theory of General Relativity
111(1)
2.3.5 Einstein's Light Particle Hypothesis
112(1)
2.3.6 Rutherford's Particle Scattering
113(2)
2.3.7 The Cross Section for Compton Scattering
115(5)
2.3.8 Bohr's Model of the Hydrogen Atom
120(4)
2.3.9 Einstein's Radiation Law and Laser Beams
124(2)
2.3.10 Quantum Computers
126(1)
2.4 The Standard Model in Particle Physics
127(13)
2.4.1 The Four Fundamental Forces in Nature
127(3)
2.4.2 The Fundamental Particles in Nature
130(10)
2.5 Magic Formulas
140(3)
2.6 Quantum Numbers of Elementary Particles
143(19)
2.6.1 The Spin
144(10)
2.6.2 Conservation of Quantum Numbers
154(8)
2.7 The Fundamental Role of Symmetry in Physics
162(16)
2.7.1 Classical Symmetries
168(2)
2.7.2 The CPT Symmetry Principle for Elementary Particles
170(4)
2.7.3 Local Gauge Symmetry
174(2)
2.7.4 Permutations and Pauli's Exclusion Principle
176(1)
2.7.5 Crossing Symmetry
176(1)
2.7.6 Forbidden Spectral Lines in Molecules
177(1)
2.8 Symmetry Breaking
178(5)
2.8.1 Parity Violation and CP Violation
178(1)
2.8.2 Irreversibility
179(1)
2.8.3 Splitting of Spectral Lines in Molecules
179(1)
2.8.4 Spontaneous Symmetry Breaking and Particles
180(2)
2.8.5 Bifurcation and Phase Transitions
182(1)
2.9 The Structure of Interactions in Nature
183(4)
2.9.1 The Electromagnetic Field as Generalized Curvature
183(1)
2.9.2 Physics and Modern Differential Geometry
184(3)
3. The Challenge of Different Scales in Nature
187(22)
3.1 The Trouble with Scale Changes
187(2)
3.2 Wilson's Renormalization Group Theory in Physics
189(17)
3.2.1 A New Paradigm in Physics
191(2)
3.2.2 Screening of the Coulomb Field and the Renormalization Group of Lie Type
193(8)
3.2.3 The Running Coupling Constant and the Asymptotic Freedom of Quarks
201(3)
3.2.4 The Quark Confinement
204(1)
3.2.5 Proton Decay and Supersymmetric Grand Unification
205(1)
3.2.6 The Adler—Bell—Jackiw Anomaly
205(1)
3.3 Stable and Unstable Manifolds
206(1)
3.4 A Glance at Conformal Field Theories
207(2)
Part II. Basic Techniques in Mathematics
4. Analyticity
209(18)
4.1 Power Series Expansion
210(2)
4.2 Deformation Invariance of Integrals
212(1)
4.3 Cauchy's Integral Formula
212(1)
4.4 Cauchy's Residue Formula and Topological Charges
213(1)
4.5 The Winding Number
214(1)
4.6 Gauss' Fundamental Theorem of Algebra
215(2)
4.7 Compactification of the Complex Plane
217(1)
4.8 Analytic Continuation and the Local-Global Principle
218(1)
4.9 Integrals and Riemann Surfaces
219(4)
4.10 Domains of Holomorphy
223(1)
4.11 A Glance at Analytic S-Matrix Theory
224(1)
4.12 Important Applications
225(2)
5. A Glance at Topology
227(50)
5.1 Local and Global Properties of the Universe
227(1)
5.2 Bolzano's Existence Principle
228(2)
5.3 Elementary Geometric Notions
230(4)
5.4 Manifolds and Diffeomorphisms
234(1)
5.5 Topological Spaces, Homeomorphisms, and Deformations
235(6)
5.6 Topological Quantum Numbers
241(24)
5.6.1 The Genus of a Surface
241(1)
5.6.2 The Euler Characteristic
242(2)
5.6.3 Platonic Solids and Fullerenes
244(1)
5.6.4 The Poincaré—Hopf Theorem for Velocity Fields
245(1)
5.6.5 The Gauss—Bonnet Theorem
246(4)
5.6.6 The Morse Theorem on Critical Points of Energy Functions
250(1)
5.6.7 Magnetic Fields, the Gauss Integral, and the Linking Number
251(2)
5.6.8 Electric Fields, the Kronecker Integral, and the Mapping Degree
253(4)
5.6.9 The Heat Kernel and the Atiyah—Singer Index Theorem
257(6)
5.6.10 Knots and Topological Quantum Field Theory
263(2)
5.7 Quantum States
265(10)
5.7.1 The Topological Character of the Electron Spin
265(3)
5.7.2 The Hopf Fibration of the 3-Dimensional Sphere
268(3)
5.7.3 The Homotopy Functor
271(3)
5.7.4 Grassmann Manifolds and Projective Geometry
274(1)
5.8 Perspectives
275(2)
6. Many-Particle Systems in Mathematics and Physics
277(48)
6.1 Partition Function in Statistical Physics
279(4)
6.2 Euler's Partition Function
283(2)
6.3 Discrete Laplace Transformation
285(4)
6.4 Integral Transformations
289(2)
6.5 The Riemann Zeta Function
291(8)
6.5.1 The Prime Number Theorem — a Pearl of Mathematics
291(5)
6.5.2 The Riemann Hypothesis
296(1)
6.5.3 Dirichlet's L-Function
296(3)
6.6 The Casimir Effect in Quantum Field Theory and the Epstein Zeta Function
299(6)
6.7 Appendix: The Mellin Transformation and Other Useful Analytic Techniques by Don Zagier
305(20)
6.7.1 The Generalized Mellin Transformation
305(4)
6.7.2 Dirichlet Series and their Special Values
309(3)
6.7.3 Application: the Casimir Effect
312(5)
6.7.4 Asymptotics of Series of the Form Σƒ (nt)
317(8)
7. Rigorous Finite-Dimensional Magic Formulas of Quantum Field Theory
325(172)
7.1 Geometrization of Physics
325(1)
7.2 Ariadne's Thread in Quantum Field Theory
326(2)
7.3 Linear Spaces
328(7)
7.4 Finite-Dimensional Hilbert Spaces
335(5)
7.5 Groups
340(2)
7.6 Lie Algebras
342(3)
7.7 Lie's Logarithmic Trick for Matrix Groups
345(2)
7.8 Lie Groups
347(2)
7.9 Basic Notions in Quantum Physics
349(6)
7.9.1 States, Costates, and Observables
350(4)
7.9.2 Observers and Coordinates
354(1)
7.10 Fourier Series
355(4)
7.11 Dirac Calculus in Finite-Dimensional Hilbert Spaces
359(4)
7.12 The Trace of a Linear Operator
363(3)
7.13 Banach Spaces
366(2)
7.14 Probability and Hilbert's Spectral Family of an Observable
368(2)
7.15 Transition Probabilities, S-Matrix, and Unitary Operators
370(2)
7.16 The Magic Formulas for the Green's Operator
372(9)
7.16.1 Non-Resonance and Resonance
373(4)
7.16.2 Causality and the Laplace Transform
377(4)
7.17 The Magic Dyson Formula for the Retarded Propagator
381(9)
7.17.1 Lagrange's Variation of the Parameter
383(2)
7.17.2 Duhamel's Principle
385(1)
7.17.3 The Volterra Integral Equation
386(2)
7.17.4 The Dyson Series
388(2)
7.18 The Magic Dyson Formula for the S-Matrix
390(2)
7.19 Canonical Transformations
392(3)
7.19.1 The Schrödinger Picture
392(1)
7.19.2 The Heisenberg Picture
393(1)
7.19.3 The Dirac Interaction Picture
394(1)
7.20 Functional Calculus
395(21)
7.20.1 Functional Derivatives
396(5)
7.20.2 Partial Functional Derivatives
401(8)
7.20.3 Infinitesimal Transformations
409(7)
7.20.4 Functional Integration
416(1)
7.21 The Discrete Feynman Path Integral
416(8)
7.21.1 The Magic Feynman Propagator Formula
417(5)
7.21.2 The Magic Formula for Time-Ordered Products
422(1)
7.21.3 The Trace Formula
423(1)
7.22 Causal Correlation Functions
424(4)
7.22.1 The Wick Rotation Trick for Vacuum Expectation Values
425(2)
7.22.2 The Magic Gell-Mann–Low Reduction Formula
427(1)
7.23 The Magic Gaussian Integral
428(10)
7.23.1 The One-Dimensional Prototype
428(6)
7.23.2 The Determinant Trick
434(1)
7.23.3 The Zeta Function Trick
434(1)
7.23.4 The Moment Trick
435(1)
7.23.5 The Method of Stationary Phase
435(3)
7.24 The Rigorous Response Approach to Finite Quantum Fields
438(21)
7.24.1 Basic Ideas
439(2)
7.24.2 Discrete Space-Time Manifold
441(4)
7.24.3 The Principle of Critical Action
445(1)
7.24.4 The Response Function
446(1)
7.24.5 The Global Quantum Action Principle
447(1)
7.24.6 The Magic Quantum Action Reduction Formula for Correlation Functions
448(1)
7.24.7 The Magic LSZ Reduction Formula for Scattering Functions
449(3)
7.24.8 The Local Quantum Action Principle
452(2)
7.24.9 Simplifying the Computation of Quantum Effects
454(1)
7.24.10 Reduced Correlation Functions
455(1)
7.24.11 The Mean Field Approximation
456(1)
7.24.12 Vertex Functions and the Effective Action
457(2)
7.25 The Discrete ρ4-Model and Feynman Diagrams
459(18)
7.26 The Extended Response Approach
477(6)
7.27 Complex-Valued Fields
483(4)
7.28 The Method of Lagrange Multipliers
487(5)
7.29 The Formal Continuum Limit
492(5)
8. Rigorous Finite-Dimensional Perturbation Theory
497(18)
8.1 Renormalization
497(9)
8.1.1 Non-Resonance
497(2)
8.1.2 Resonance, Regularizing Term, and Bifurcation
499(3)
8.1.3 The Renormalization Group
502(1)
8.1.4 The Main Bifurcation Theorem
503(3)
8.2 The Rellich Theorem
506(1)
8.3 The Trotter Product Formula
507(1)
8.4 The Magic Baker—Campbell—Hausdorff Formula
508(1)
8.5 Regularizing Terms
509(6)
8.5.1 The Weierstrass Product Theorem
509(1)
8.5.2 The Mittag—Leffler Theorem
510(1)
8.5.3 Regularization of Divergent Integrals
511(2)
8.5.4 The Polchinski Equation
513(2)
9. Fermions and the Calculus for Grassmann Variables
515(6)
9.1 The Grassmann Product
515(1)
9.2 Differential Forms
516(1)
9.3 Calculus for One Grassmann Variable
516(1)
9.4 Calculus for Several Grassmann Variables
517(1)
9.5 The Determinant Trick
518(1)
9.6 The Method of Stationary Phase
519(1)
9.7 The Fermionic Response Model
519(2)
10. Infinite-Dimensional Hilbert Spaces
521(54)
10.1 The Importance of Infinite Dimensions in Quantum Physics
521(4)
10.1.1 The Uncertainty Relation
521(3)
10.1.2 The Trouble with the Continuous Spectrum
524(1)
10.2 The Hilbert Space L2 (Ω)
525(7)
10.2.1 Measure and Integral
527(2)
10.2.2 Dirac Measure and Dirac Integral
529(1)
10.2.3 Lebesgue Measure and Lebesgue Integral
530(1)
10.2.4 The Fischer—Riesz Theorem
531(1)
10.3 Harmonic Analysis
532(8)
10.3.1 Gauss' Method of Least Squares
532(1)
10.3.2 Discrete Fourier Transform
533(2)
10.3.3 Continuous Fourier Transform
535(5)
10.4 The Dirichlet Problem in Electrostatics as a Paradigm
540(39)
10.4.1 The Variational Lemma
542(2)
10.4.2 Integration by Parts
544(3)
10.4.3 The Variational Problem
547(2)
10.4.4 Weierstrass' Counterexample
549(3)
10.4.5 Typical Difficulties
552(3)
10.4.6 The Functional Analytic Existence Theorem
555(3)
10.4.7 Regularity of the Solution
558(2)
10.4.8 The Beauty of the Green's Function
560(4)
10.4.9 The Method of Orthogonal Projection
564(3)
10.4.10 The Power of Ideas in Mathematics
567(1)
10.4.11 The Ritz Method
568(1)
10.4.12 The Main Existence Principle
569(6)
11. Distributions and Green's Functions
575(94)
11.1 Rigorous Basic Ideas
579(10)
11.1.1 The Discrete Dirac Delta Function
580(1)
11.1.2 Prototypes of Green's Functions
581(5)
11.1.3 The Heat Equation and the Heat Kernel
586(1)
11.1.4 The Diffusion Equation
587(1)
11.1.5 The Schrödinger Equation and the Euclidean Approach
588(1)
11.2 Dirac's Formal Approach
589(18)
11.2.1 Dirac's Delta Function
590(1)
11.2.2 Density of a Mass Distribution
591(1)
11.2.3 Local Functional Derivative
591(4)
11.2.4 The Substitution Rule
595(1)
11.2.5 Formal Dirac Calculus and the Fourier Transform
596(10)
11.2.6 Formal Construction of the Heat Kernel
606(1)
11.3 Laurent Schwartz's Rigorous Approach
607(11)
11.3.1 Physical Measurements and the Idea of Averaging
607(1)
11.3.2 Distributions
608(6)
11.3.3 Tempered Distributions
614(3)
11.3.4 The Fourier Transform
617(1)
11.4 Hadamard's Regularization of Integrals
618(7)
11.4.1 Regularization of Divergent Integrals
618(1)
11.4.2 The Sokhotski Formula
619(1)
11.4.3 Steinmann's Renormalization Theorem
620(2)
11.4.4 Regularization Terms
622(3)
11.5 Renormalization of the Anharmonic Oscillator
625(9)
11.5.1 Renormalization in a Nutshell
625(1)
11.5.2 The Linearized Problem
625(4)
11.5.3 The Nonlinear Problem and Non-Resonance
629(1)
11.5.4 The Nonlinear Problem, Resonance, and Bifurcation
630(2)
11.5.5 The Importance of the Renormalized Green's Function
632(1)
11.5.6 The Renormalization Group
633(1)
11.6 The Importance of Algebraic Feynman Integrals
634(10)
11.6.1 Wick Rotation and Cut-Off
634(2)
11.6.2 Dimensional Regularization
636(2)
11.6.3 Weinberg's Power-Counting Theorem
638(2)
11.6.4 Integration Tricks
640(4)
11.7 Fundamental Solutions of Differential Equations
644(7)
11.7.1 The Newtonian Potential
646(1)
11.7.2 The Existence Theorem
646(1)
11.7.3 The Beauty of Hironaka's Theorem
647(4)
11.8 Functional Integrals
651(9)
11.8.1 The Feynman Path Integral for the Heat Equation
651(3)
11.8.2 Diffusion, Brownian Motion, and the Wiener Integral
654(1)
11.8.3 The Method of Quantum Fluctuations
655(2)
11.8.4 Infinite-Dimensional Gaussian Integrals and Zeta Function Regularization
657(1)
11.8.5 The Euclidean Trick and the Feynman Path Integral for the Schrödinger Equation
658(2)
11.9 A Glance at Harmonic Analysis
660(6)
11.9.1 The Fourier–Laplace Transform
660(2)
11.9.2 The Riemann–Hilbert Problem
662(1)
11.9.3 The Hilbert Transform
663(1)
11.9.4 Symmetry and Special Functions
664(1)
11.9.5 Tempered Distributions as Boundary Values of Analytic Functions
665(1)
11.10 The Trouble With the Euclidean Trick
666(3)
12. Distributions and Physics
669(70)
12.1 The Discrete Dirac Calculus
669(6)
12.1.1 Lattices
669(1)
12.1.2 The Four-Dimensional Discrete Dirac Delta Function
670(3)
12.1.3 Rigorous Discrete Dirac Calculus
673(1)
12.1.4 The Formal Continuum Limit
673(2)
12.2 Rigorous General Dirac Calculus
675(7)
12.2.1 Eigendistributions
675(2)
12.2.2 Self-Adjoint Operators
677(1)
12.2.3 The von Neumann Spectral Theorem
678(1)
12.2.4 The Gelfand–Kostyuchenko Spectral Theorem
679(1)
12.2.5 The Duality Map
679(1)
12.2.6 Dirac's Notation
680(1)
12.2.7 The Schwartz Kernel Theorem
681(1)
12.3 Fundamental Limits in Physics
682(8)
12.3.1 High-Energy Limit
682(1)
12.3.2 Thermodynamic Limit and Phase Transitions
682(3)
12.3.3 Adiabatic Limit
685(4)
12.3.4 Singular Limit
689(1)
12.4 Duality in Physics
690(13)
12.4.1 Particles and de Broglie's Matter Waves
690(2)
12.4.2 Time and Frequency
692(1)
12.4.3 Time and Energy
692(1)
12.4.4 Position and Momentum
692(3)
12.4.5 Causality and Analyticity
695(7)
12.4.6 Strong and Weak Interaction
702(1)
12.5 Microlocal Analysis
703(26)
12.5.1 Singular Support of a Distribution
704(2)
12.5.2 Wave Front Set
706(8)
12.5.3 The Method of Stationary Phase
714(4)
12.5.4 Short-Wave Asymptotics for Electromagnetic Waves
718(6)
12.5.5 Diffraction of Light
724(4)
12.5.6 Pseudo-Differential Operators
728(1)
12.5.7 Fourier Integral Operators
728(1)
12.6 Multiplication of Distributions
729(13)
12.6.1 Laurent Schwartz's Counterexample
730(2)
12.6.2 Hörmander's Causal Product
732(7)
Part III. Heuristic Magic Formulas of Quantum Field Theory
13. Basic Strategies in Quantum Field Theory
739(26)
13.1 The Method of Moments and Correlation Functions
742(3)
13.2 The Power of the S-Matrix
745(1)
13.3 The Relation Between the S-Matrix and the Correlation Functions
746(1)
13.4 Perturbation Theory and Feynman Diagrams
747(1)
13.5 The Trouble with Interacting Quantum Fields
748(1)
13.6 External Sources and the Generating Functional
749(2)
13.7 The Beauty of Functional Integrals
751(6)
13.7.1 The Principle of Critical Action
752(1)
13.7.2 The Magic Feynman Representation Formula
753(1)
13.7.3 Perturbation Theory
754(1)
13.7.4 Renormalization
754(1)
13.7.5 Transition Amplitudes
755(1)
13.7.6 The Magic Trace Formula
756(1)
13.8 Quantum Field Theory at Finite Temperature
757(13)
13.8.1 The Partition Function
757(3)
13.8.2 The Classical Hamiltonian Approach
760(1)
13.8.3 The Magic Feynman Functional Integral for the Partition Function
761(2)
13.8.4 The Thermodynamic Limit
763(2)
14. The Response Approach
765(48)
14.1 The Fourier—Minkowski Transform
770(3)
14.2 The ρ4-Model
773(16)
14.2.1 The Classical Principle of Critical Action
774(1)
14.2.2 The Response Function and the Feynman Propagator
774(8)
14.2.3 The Extended Quantum Action Functional
782(1)
14.2.4 The Magic Quantum Action Reduction Formula for Correlation Functions
782(3)
14.2.5 The Magic LSZ Reduction Formula for the S-Matrix
785(2)
14.2.6 The Local Quantum Action Principle
787(1)
14.2.7 The Mnemonic Functional Integral
787(1)
14.2.8 Bose—Einstein Condensation of Dilute Gases
788(1)
14.3 A Glance at Quantum Electrodynamics
789(25)
14.3.1 The Equations of Motion
791(1)
14.3.2 The Principle of Critical Action
792(2)
14.3.3 The Gauge Field Approach
794(3)
14.3.4 The Extended Action Functional with Source Term
797(2)
14.3.5 The Response Function for Photons
799(1)
14.3.6 The Response Function for Electrons
800(1)
14.3.7 The Extended Quantum Action Functional
801(2)
14.3.8 The Magic Quantum Action Reduction Formula
803(1)
14.3.9 The Magic LSZ Reduction Formula
803(1)
14.3.10 The Mnemonic Functional Integral
804(9)
15. The Operator Approach
813(64)
15.1 The ρ4-Model
814(32)
15.1.1 The Lattice Approximation
815(2)
15.1.2 Fourier Quantization
817(3)
15.1.3 The Free 2-Point Green's Function
820(2)
15.1.4 The Magic Dyson Formula for the S-Matrix
822(2)
15.1.5 The Main Wick Theorem
824(5)
15.1.6 Transition Amplitude
829(8)
15.1.7 Transition Probability
837(2)
15.1.8 Scattering Cross Section
839(4)
15.1.9 General Feynman Rules for Particle Scattering
843(2)
15.1.10 The Magic Gell-Mann-Low Reduction Formula for Green's Functions
845(1)
15.2 A Glance at Quantum Electrodynamics
846(1)
15.3 The Role of Effective Quantities in Physics
847(1)
15.4 A Glance at Renormalization
848(12)
15.4.1 The Trouble with the Continuum Limit
850(1)
15.4.2 Basic Ideas of Renormalization
850(3)
15.4.3 The BPHZ Renormalization
853(1)
15.4.4 The Epstein—Glaser Approach
854(4)
15.4.5 Algebraic Renormalization
858(1)
15.4.6 The Importance of Hopf Algebras
859(1)
15.5 The Convergence Problem in Quantum Field Theory
860(2)
15.5.1 Dyson's No-Go Argument
860(1)
15.5.2 The Power of the Classical Ritt Theorem in Quantum Field Theory
861(1)
15.6 Rigorous Perspectives
862(15)
15.6.1 Axiomatic Quantum Field Theory
866(4)
15.6.2 The Euclidean Strategy in Constructive Quantum Field Theory
870(2)
15.6.3 The Renormalization Group Method
872(5)
16. Peculiarities of Gauge Theories
877(30)
16.1 Basic Difficulties
877(1)
16.2 The Principle of Critical Action
878(6)
16.3 The Language of Physicists
884(2)
16.4 The Importance of the Higgs Particle
886(1)
16.5 Integration over Orbit Spaces
886(2)
16.6 The Magic Faddeev—Popov Formula and Ghosts
888(2)
16.7 The BRST Symmetry
890(1)
16.8 The Power of Cohomology
891(12)
16.8.1 Physical States, Unphysical States, and Cohomology
893(1)
16.8.2 Forces and Potentials
894(2)
16.8.3 The Cohomology of Geometric Objects
896(3)
16.8.4 The Spectra of Atoms and Cohomology
899(1)
16.8.5 BRST Symmetry and the Cohomology of Lie Groups
900(3)
16.9 The Batalin—Vilkovisky Formalism
903(1)
16.10 A Glance at Quantum Symmetries
904(3)
17. A Panorama of the Literature
907(24)
17.1 Introduction to Quantum Field Theory
907(3)
17.2 Standard Literature in Quantum Field Theory
910(1)
17.3 Rigorous Approaches to Quantum Field Theory
911(2)
17.4 The Fascinating Interplay between Modern Physics and Mathematics
913(6)
17.5 The Monster Group, Vertex Algebras, and Physics
919(5)
17.6 Historical Development of Quantum Field Theory
924(1)
17.7 General Literature in Mathematics and Physics
925(1)
17.8 Encyclopedias
926(1)
17.9 Highlights of Physics in the 20th Century
926(2)
17.10 Actual Information
928(3)
Appendix 931(24)
A.1 Notation
931(3)
A.2 The International System of Units
934(2)
A.3 The Planck System
936(6)
A.4 The Energetic System
942(2)
A.5 The Beauty of Dimensional Analysis
944(2)
A.6 The Similarity Principle in Physics
946(9)
Epilogue 955(4)
References 959(32)
List of Symbols 991(4)
Index 995

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program