did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9783527405411

Quantum Information Processing

by ;
  • ISBN13:

    9783527405411

  • ISBN10:

    3527405410

  • Edition: 2nd
  • Format: Hardcover
  • Copyright: 2005-05-06
  • Publisher: Wiley-VCH

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $335.99 Save up to $124.32
  • Rent Book $211.67
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-4 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?

Summary

Quantum processing and communication is emerging as a challenging technique at the beginning of the new millennium. This is an up-to-date insight into the current research of quantum superposition, entanglement, and the quantum measurement process - the key ingredients of quantum information processing. The authors further address quantum protocols and algorithms. Complementary to similar programmes in other countries and at the European level, the German Research Foundation (DFG) started a focused research program on quantum information in 1999. The contributions - written by leading experts - bring together the latest results in quantum information as well as addressing all the relevant questions.

Author Biography

Thomas Beth studied mathematics, physics and medicine. He received his Ph.D. in 1978 and his Postdoctoral Lecturer Qualification (Dr.-Ing. habil.) in informatics in 1984. From a position as Professor of computer science at the University of London he was apppointed to a chair of informatics at the University of Karlsruhe. He also is the director of the European Institute for System Security (E.I.S.S.). In the past decade he has built up a research center for quantum information at the Institute for Algorithms and Cognitive Systems (IAKS).

Gerd Leuchs studied physics and mathematics at the University of Cologne and received his Ph.D. in 1978. After two research visits at the University of Colorado, Boulder, he headed the German Gravitational Wave Detection Group from 1985 to 1989. He then went on to be the technical director of Nanomach AG in Switzerland for four years. Since 1994 he holds the chair for optics at the Friedrich-Alexander-University of Erlangen-Nuremberg, Germany. His fields of research span the range from modern aspects of classical optics to quantum optics and quantum information.

Table of Contents

Preface XV
List of Contributors XIX
1 Algorithms for Quantum Systems - Quantum Algorithms
Th. Beth, M. Grassi, D. Janzing, M. Rötteler, P. Wocjan, and R. Zeier
1(13)
1.1 Introduction
1(1)
1.2 Fast Quantum Signal Transforms
1(2)
1.3 Quantum Error-correcting Codes
3(2)
1.4 Efficient Decomposition of Quantum Operations into Given One-parameter Groups
5(3)
1.5 Simulation of Hamiltonians
8(2)
References
10(4)
2 Quantum Information Processing and Error Correction with Jump Codes
G. Alber, M. Mussinger, and A. Delgado
14(14)
2.1 Introduction
14(1)
2.2 Invertible Quantum Operations and Error Correction
15(2)
2.3 Quantum Error Correction by Jump Codes
17(4)
2.3.1 Spontaneous Decay and Quantum Trajectories
17(2)
2.3.2 Jump Codes
19(2)
2.4 Universal Quantum Gates in Code Spaces
21(4)
2.4.1 Universal Sets of Quantum Gates for Qudit-Systems
21(1)
2.4.2 Universal One-Qutrit Gates
22(1)
2.4.3 A Universal Entanglement Gate
23(2)
2.5 Summary and Outlook
25(1)
References
26(2)
3 Computational Model for the One-Way Quantum Computer: Concepts and Summary
R. Raussendorf and H.J. Briegel
28(16)
3.1 Introduction
28(2)
3.2 The QCc as a Universal Simulator of Quantum Logic Networks
30(5)
3.3 Non-Network Character of the QCc
35(1)
3.4 Computational Model
36(6)
3.5 Conclusion
42(1)
References
42(2)
4 Quantum Correlations as Basic Resource for Quantum Key Distribution
M. Curly, O. Gühne, M. Lewenstein, and N. Lütkenhaus
44(14)
4.1 Introduction
44(1)
4.2 Background of Classical Information Theoretic Security
45(1)
4.3 Link Between Classical and Quantum
46(3)
4.4 Searching for Effective Entanglement
49(2)
4.5 Verification Sets
51(2)
4.5.1 6-state Protocol
51(1)
4.5.2 4-state Protocol
51(1)
4.5.3 2-state Protocol
52(1)
4.6 Examples for Evaluation
53(1)
4.7 Realistic Experiments
54(1)
4.8 Conclusions
55(1)
References
55(3)
5 Increasing the Size of NMR Quantum Computers
S.J. Glaser, R. Marx, T. Reiss, T. Schulte-Herbrüggen, N. Khaneja, J.M. Myers, and A.F. Fahmy
58(12)
5.1 Introduction
58(1)
5.2 Suitable Molecules
59(3)
5.3 Scaling Problem for Experiments Based on Pseudo-pure States
62(1)
5.4 Approaching Pure States
62(1)
5.5 Scalable NMR Quantum Computing Based on the Thermal Density Operator
63(1)
5.6 Time-optimal Implementation of Quantum Gates
64(3)
5.7 Conclusion
67(1)
References
68(2)
6 On Lossless Quantum Data Compression and Quantum Variable-length Codes
R. Ahlswede and N. Cai
70(13)
6.1 Introduction
70(1)
6.2 Codes, Lengths, Kraft Inequality and von Neumann Entropy Bound
71(2)
6.2.1 The Codes
71(1)
6.2.2 Length Observable and Average Length of Codewords
72(1)
6.2.3 Kraft Inequality and von Neumann Entropy Bound
72(1)
6.2.4 Base Length
73(1)
6.3 Construct Long Codes from Variable-length Codes
73(1)
6.4 Lossless Quantum Data Compression, if the Decoder is Informed about the Base Lengths
74(1)
6.5 Code Analysis Based on the Base Length
75(1)
6.6 Lossless Quantum Data Compression with a Classical Helper
76(3)
6.7 Lossless Quantum Data Compression for Mixed State Sources
79(1)
6.8 A Result on Tradeoff between Quantum and Classical Resources in Lossy Quantum Data Compression
80(1)
References
81(2)
7 Entanglement Properties of Composite Quantum Systems
K. Eckert, O. Gühne, F. Hulpke, P. Hyllus, J. Korbicz, J. Mompart, D. Bruß, M. Lewenstein, and A. Sanpera
83(17)
7.1 Introduction
83(1)
7.2 Separability of Composite Quantum Systems
84(4)
7.2.1 The Separability Problem
85(1)
7.2.2 Results on The Separability Problem
86(2)
7.3 The Distillability Problem
88(2)
7.3.1 Results on the Distillability Problem
89(1)
7.4 Witness Operators for the Detection of Entanglement
90(4)
7.4.1 Definition and Geometrical Interpretation of Witness Operators
90(2)
7.4.2 Results on Witness Operators
92(2)
7.5 Quantum Correlations in Systems of Fermionic and Bosonic States
94(3)
7.5.1 What is Different with Indistinguishable Particles?
94(1)
7.5.2 Results on Quantum Correlations for Indistinguishable Particles
95(2)
7.5.3 Implementation of an Entangling Gate with Bosons
97(1)
7.6 Summary
97(1)
References
97(3)
8 Non-Classical Gaussian States in Noisy Environments
S. Scheel and D.-G. Welsch
100(13)
8.1 Introduction
100(1)
8.2 Gaussian States and Gaussian Operations
100(4)
8.2.1 Classicality
102(1)
8.2.2 CP Maps and Partial Measurements
102(1)
8.2.3 Separability and Entanglement
103(1)
8.3 Entanglement Degradation
104(2)
8.4 Quantum Teleportation in Noisy Environments
106(5)
8.4.1 Imperfect Teleportation
107(1)
8.4.2 Teleportation Fidelity
108(2)
8.4.3 Choice of the Coherent Displacement
110(1)
References
111(2)
9 Quantum Estimation with Finite Resources
T.C. Bschorr, D.G. Fischer, H. Mack, W.P. Schleich, and M. Freyberger
113(12)
9.1 Introduction
113(1)
9.2 Quantum Devices and Channels
114(1)
9.3 Estimating Quantum Channels
115(1)
9.4 Entanglement and Estimation
115(5)
9.4.1 Estimation using Single Qubits
116(2)
9.4.2 Estimation using Entangled States
118(2)
9.5 Generalized Estimation Schemes
120(3)
9.5.1 Estimation with Two Channels
120(1)
9.5.2 What is the Optimal Reference Channel?
121(1)
9.5.3 Estimation with Werner States
122(1)
9.6 Outlook
123(1)
References
124(1)
10 Size Scaling of Decoherence Rates
C.S. Maierle and D. Suter
125(10)
10.1 Introduction
125(1)
10.2 Decoherence Models
126(1)
10.3 Collective and Independent Decoherence
127(1)
10.4 Average Decoherence Rate as a Measure of Decoherence
128(2)
10.5 Decoherence Rate Scaling due to Partially Correlated Fields
130(4)
10.6 Conclusion
134(1)
References
134(1)
11 Reduced Collective Description of Spin-Ensembles
M. Michel, H. Schmidt, F. Tanner, and G. Mahler
135(15)
11.1 Introduction
135(1)
11.2 Operator Representations
135(3)
11.3 Hamilton Models
138(2)
11.3.1 Symmetry-constrained Networks
138(1)
11.3.2 Topology-constrained Networks
139(1)
11.4 State Models
140(1)
11.4.1 Totally Permutation-symmetric Subspace
140(1)
11.4.2 Collective 1-particle Excitations
140(1)
11.4.3 1-parameter Families of Non-pure States
141(1)
11.4.4 Families of Separable States: "Modules"
141(1)
11.5 Ensembles
141(6)
11.5.1 Trajectories and Ergodicity
142(2)
11.5.2 Leakage and Storage Capacity
144(2)
11.5.3 Mixing Strategies
146(1)
11.5.4 State Construction and Separability
147(1)
11.6 Summary and Outlook
147(1)
References
148(2)
12 Quantum Information Processing with Defects
F. Jelezko and J. Wrachtrup
150(12)
12.1 Introduction
150(1)
12.2 Properties of Nitrogen-vacancy Centers in Diamond
150(2)
12.3 Readout of Spin State via Site-selective Excitation
152(3)
12.4 Magnetic Resonance on a Single Spin at Room Temperature
155(1)
12.5 Magnetic Resonance on a Single ¹³c Nuclear Spin
156(2)
12.6 Two-qubit Gate with Electron Spin and ¹³C Nuclear Spin of Single NV Defect
158(2)
12.7 Outlook: Towards Scalable NV Based Quantum Processor
160(1)
References
160(2)
13 Quantum Dynamics of Vortices and Vortex Qubits
A. Wallraff, A. Kemp, and A.V. Ustinov
162(24)
13.1 Introduction
162(1)
13.2 Macroscopic Quantum Effects with Single Vortices
163(4)
13.2.1 Quantum Tunneling
163(2)
13.2.2 Energy Level Quantization
165(2)
13.3 Vortex-Antivortex Pairs
167(6)
13.3.1 Thermal and Quantum Dissociation
167(4)
13.3.2 Energy Levels of a Bound Vortex-Antivortex Pair
171(2)
13.4 The Josephson Vortex Qubit
173(9)
13.4.1 Principle of the Vortex Qubit
174(1)
13.4.2 Model
175(2)
13.4.3 Perturbative Calculation of Vortex Potential
177(2)
13.4.4 Quantum Mechanics of a Vortex in a Double Well
179(1)
13.4.5 Depinning Current and Qubit Readout
180(2)
13.5 Conclusions
182(1)
References
183(3)
14 Decoherence in Resonantly Driven Bistable Systems
S. Kohler and P. Hänggi
186(12)
14.1 Introduction
186(1)
14.2 The Model and its Symmetries
186(2)
14.3 Coherent Tunneling
188(4)
14.4 Dissipative Tunneling
192(4)
14.5 Conclusions
196(1)
References
197(1)
15 Entanglement and Decoherence in Cavity QED with a Trapped Ion
W. Vogel and Ch. DiFidio
198(11)
15.1 Introduction
198(1)
15.2 Decoherence Effects
199(2)
15.3 Greenberger-Horne-Zeilinger State
201(2)
15.4 Photon-number Control
203(2)
15.5 Entanglement of Separated Atoms
205(2)
15.6 Summary
207(1)
References
207(2)
16 Quantum Information Processing with Ions Deterministically Coupled to an Optical Cavity
M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther
209(14)
16.1 Introduction
209(1)
16.2 Deterministic Coupling of Ions and Cavity Field
210(2)
16.3 Single-ion Mapping of Cavity-Modes
212(3)
16.4 Atom-Photon Interface
215(2)
16.5 Single-Photon Source
217(2)
16.6 Cavity-mediated Two-Ion Coupling
219(2)
References
221(2)
17 Strongly Coupled Atom-Cavity Systems
A. Kuhn, M. Hennrich, and G. Rempe
223(14)
17.1 Introduction
223(1)
17.2 Atoms, Cavities and Light
223(5)
17.2.1 Field Quantization in a Fabry-Perot Cavity
223(1)
17.2.2 Two-Level Atom
224(1)
17.2.3 Three-Level Atom
225(2)
17.2.4 Adiabatic Passage
227(1)
17.3 Single-Photon Sources
228(5)
17.3.1 Vacuum-Stimulated Raman Scattering
229(1)
17.3.2 Deterministic Single-Photon Sequences
230(3)
17.4 Summary and Outlook
233(1)
References
233(4)
18 A Relaxation-free Verification of the Quantum Zeno Paradox on an Individual Atom
Ch. Balzer, Th. Hannemann, D. Reiß, Ch. Wunderlich, W. Neuhauser, and P.E. Toschek
237(14)
18.1 Introduction
237(1)
18.2 The Hardware and Basic Procedure
238(3)
18.3 First Scheme: Statistics of the Sequences of Equal Results
241(2)
18.4 Second Scheme: Driving the Ion by Fractionated π-Pulses
243(3)
18.5 Conclusions
246(1)
18.6 Survey of Related Work
247(2)
References
249(2)
19 Spin Resonance with Trapped Ions: Experiments and New Concepts
K. Abich, Ch. Balzer, T. Hannemann, F. Mintert, W. Neuhauser, D. Reiß, P.E. Toschek, and Ch. Wunderlich
251(14)
19.1 Introduction
251(1)
19.2 Self-learning Estimation of Quantum States
252(2)
19.3 Experimental Realization of Quantum Channels
254(2)
19.4 New Concepts for QIP with Trapped Ions
256(5)
19.4.1 Spin Resonance with Trapped Ions
257(3)
19.4.2 Simultaneous Cooling of Axial Vibrational Modes
260(1)
19.5 Raman Cooling of two Trapped Ions
261(2)
References
263(2)
20 Controlled Single Neutral Atoms as Qubits
V. Gomer, W. Alt, S. Kuhr, D. Schrader, and D. Meschede
265(10)
20.1 Introduction
265(1)
20.2 Cavity QED for QIP
265(1)
20.3 Single Atom Controlled Manipulation
266(1)
20.4 How to Prepare Exactly 2 Atoms in a Dipole Trap?
267(1)
20.5 Optical Dipole Trap
267(1)
20.6 Relaxation and Decoherence
268(1)
20.7 Qubit Conveyor Belt
269(1)
20.8 Outlook
270(1)
References
270(5)
21 Towards Quantum Logic with Cold Atoms in a CO2 Laser Optical Lattice
G. Cennini, G. Ritt, C. Geckeler, R. Scheunemann, and M. Weitz
275(12)
21.1 Introduction
275(1)
21.2 Entanglement and Beyond
276(1)
21.3 Quantum Logic and Far-detuned Optical Lattices
277(2)
21.4 Resolving and Addressing Cold Atoms in Single Lattice Sites
279(3)
21.5 Recent Work
282(2)
References
284(3)
22 Quantum Information Processing with Atoms in Optical Micro-Structures
R. Dumke, M. Volk, T. Müther, F.B.J. Buchkremer, W. Earner, and G. Birkl
287(11)
22.1 Introduction
287(1)
22.2 Microoptical Elements for Quantum Information Processing
288(1)
22.3 Experimental Setup
289(1)
22.4 Scalable Qubit Registers Based on Arrays of Dipole Traps
290(1)
22.5 Initialization, Manipulation and Readout
291(1)
22.6 Variation of Trap Separation
292(1)
22.7 Implementation of Qubit Gates
293(3)
References
296(2)
23 Quantum Information Processing with Neutral Atoms on Atom Chips
P. Krüger, A. Haase, MAndersson, and J. Schmiedmayer
298(14)
23.1 Introduction
298(1)
23.2 The Atom Chip
298(4)
23.2.1 Combined Magneto-Electric Traps
299(1)
23.2.2 RF-induced Adiabatic Potentials for Manipulating Atoms
300(1)
23.2.3 Imperfections in the Atom Chip: Disorder Potentials
301(1)
23.3 The Qubit
302(1)
23.4 Entangling Qubits
303(2)
23.4.1 Quantum Gate via Cold Controlled Collisions
303(2)
23.4.2 Motional Qubit Gates with Controlled Collisions
305(1)
23.5 Input/Output
305(2)
23.5.1 Qubit Detection
305(2)
23.5.2 Quantum Input/Output
307(1)
23.6 Noise and Decoherence
307(1)
23.7 Summary and Conclusion
308(1)
References
309(3)
24 Quantum Gates and Algorithms Operating on Molecular Vibrations
U. Troppmann, C.M. Tesch, and R. de Vivie-Riedle
312(15)
24.1 Introduction
312(1)
24.2 Qubit States Encoded in Molecular Vibrations
313(1)
24.3 Optimal Control Theory for Molecular Dynamics
313(4)
24.3.1 Local Quantum Gates
315(2)
24.4 Multi-target OCT for Global Quantum Gates
317(1)
24.4.1 Global Quantum Gates for Molecular Vibrational Qubits
317(1)
24.5 Basis Set Independence and Quantum Algorithms
318(3)
24.6 Towards More Complex Molecular Systems
321(3)
24.7 Outlook
324(1)
References
325(2)
25 Fabrication and Measurement of Aluminum and Niobium Based Single-Electron Transistors and Charge Qubits
W. Krech, D. Born, M. Mihalik, and M. Grajcar
327(11)
25.1 Introduction
327(1)
25.2 Motivation for this Work
328(1)
25.3 Sample Preparation
329(2)
25.3.1 Scheme of the Junction Preparation Technique
329(1)
25.3.2 Fabrication of Tunnel Devices: SET and Charge Qubit Structures
330(1)
25.4 Experimental Results
331(2)
25.5 Conclusions
333(2)
References
335(3)
26 Quantum Dot Circuits for Quantum Computation
R.H. Blick, A.K. Hüttel, A.W. Holleitner, L. Pescini, and H. Lorenz
338(15)
26.1 Introduction
338(1)
26.2 Realizing Quantum Bits in Double Quantum Dots
339(7)
26.3 Controlling the Electron Spin in Single Dots
346(5)
26.4 Summary
351(1)
References
351(2)
27 Manipulation and Control of Individual Photons and Distant Atoms via Linear Optical Elements
X.-B. Zou and W. Mathis
353(29)
27.1 Introduction
353(1)
27.2 Manipulation and Control of Individual Photons via Linear Optical Elements
354(16)
27.2.1 Teleportation Implementation of Non-deterministic NLS Gate and Single-mode Photon Filter
354(5)
27.2.2 Implementation of Non-deterministic NLS Gate via Parametric Amplifiers
359(1)
27.2.3 Phase Measurement of Light and Generation of Superposition of Fock States
360(5)
27.2.4 Joint Measurement of Photon Number Sum and Phase Difference Operators on a Two-mode Field
365(5)
27.2.5 Remark
370(1)
27.3 Quantum Entanglement Between Distant Atoms Trapped in Different Optical Cavities
370(9)
27.3.1 Generation of W States, GHZ States and Cluster States Based on Single-photon Detectors
370(6)
27.3.2 Generation of W States and GHZ States Based on Four-photon Coincidence Detection
376(3)
27.4 Conclusion
379(1)
References
379(3)
28 Conditional Linear Optical Networks
S. Scheel
382(11)
28.1 Introduction
382(1)
28.2 Measurement-induced Nonlinearities
383(3)
28.2.1 Beam Splitters and Networks
384(1)
28.2.2 Post-processing of Single-Photon Sources and Number-Resolving Detectors
385(1)
28.3 Probability of Success and Permanents
386(2)
28.4 Upper Bounds on Success Probabilities
388(2)
28.5 Extension Using Weak Nonlinearities
390(1)
References
391(2)
29 Multiphoton Entanglement
M. Bourennane, M. Eibl, S. Gaertner, N. Kiesel, Ch. Kurtsiefer, M. Zukowski, and H. Weinfurter
393(12)
29.1 Introduction
393(1)
29.2 Entangled Multiphoton State Preparation
394(1)
29.3 Experiment
395(1)
29.4 Quantum Correlations
396(2)
29.5 Bell Inequality
398(2)
29.6 Genuine Four-photon Entanglement
400(1)
29.7 Entanglement Persistence
400(1)
29.8 Conclusions
401(2)
References
403(2)
30 Quantum Polarization for Continuous Variable Information Processing
N. Korolkova
405(13)
30.1 Introduction
405(1)
30.2 Nonseparability and Squeezing
406(4)
30.2.1 Polarization Squeezing
406(1)
30.2.2 Continuous Variable Polarization Entanglement
407(3)
30.3 Applications
410(3)
30.4 Stokes Operators Questioned: Degree of Polarization in Quantum Optics
413(3)
References
416(2)
31 A Quantum Optical XOR Gate
H. Becker, K. Schmid, W. Dultz, W. Martienssen, and H. Roskos
418(7)
31.1 Introduction
418(1)
31.2 Double Bump Photons
418(2)
31.3 The XOR Gate
420(3)
31.4 Quad Bump Photons
423(1)
31.5 Outlook
424(1)
References
424(1)
32 Quantum Fiber Solitons - Generation, Entanglement, and Detection
G. Leuchs, N. Korolkova, O. Glöckl, St. Lorenz, T. Heersink, Ch. Silberhorn, Ch. Marquardt, and U.L. Andersen
425(18)
32.1 Introduction
425(1)
32.2 Quantum Correlations and Entanglement
426(2)
32.3 Multimode Quantum Correlations
428(3)
32.4 Generation of Bright Entangled Beams
431(1)
32.5 Detection of Entanglement of Bright Beams
432(3)
32.5.1 Sub-shot-noise Phase Quadrature Measurements on Intense Beams
432(2)
32.5.2 Direct Experimental Test of Non-Separability
434(1)
32.6 Entanglement Swapping
435(2)
32.7 Polarization Variables
437(2)
References
439(4)
Index 443

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program