rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9783540675112

Multifield Problems

by ; ;
  • ISBN13:

    9783540675112

  • ISBN10:

    3540675116

  • Format: Hardcover
  • Copyright: 2000-06-01
  • Publisher: Springer Verlag
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $219.99

Summary

The simulation of complex engineering problems often involves an interaction or coupling of individual phenomena, which are traditionally related by themselves to separate fields of applied mechanics. Typical examples of these so- called multifield problems are the thermo-mechanical analysis of solids with coupling between mechanical stress analysis and thermal heat transfer processes, the simulation of coupled deformation and fluid transport mechanisms in porous media, the prediction of mass transport and phase transition phenomena of mixtures, the analysis of sedimentation proces- ses based on an interaction of particle dynamics and viscous flow, the simulation of multibody systems and fluid-structure interactions based on solid-to-solid and solid-to-fluid contact mechanisms.

Table of Contents

The Many Roles of Viscosity in Solid Mechanics
1(11)
Stuart S. Antman
Introduction
1(1)
A two-dimensional shearing problem
1(3)
Self-sustained oscillations of a viscoelastic layer
4(1)
Longitudinal motions
5(1)
Longitudinal motions of incompressible rods
6(2)
The motion of rods in space
8(1)
Shocks and viscosity
9(2)
References
10(1)
Multiscale Approach to a Basic Problem of Materials Mechanics (Propagation of Phase-Transition Fronts)
11(12)
Gerard A. Maugin
Introduction
11(1)
Microscopic condensed-matter-physics approach: solitonics
12(1)
Macroscopic engineering approach: singular surface and thermodynamic criterion
13(3)
Mesoscopic applied-mathematics approach: structured front
16(1)
Theoretical-physics approach: quasi-particle and transient motion
16(1)
Numerics: from finite-differences to continuous cellular automata
17(2)
Finite-Difference Method
17(1)
Finite-Element Method
18(1)
Finite-Volume Method and cellular automation
18(1)
Conclusion
19(4)
References
21(2)
Section 1: Two and Multiphase Flows 23(44)
H. Herrmann
S. Schwarzer
Analysing Particle Sedimentation in Fluids by Measure-Valued Stochastic Processes
25(9)
Christian Hesse
Armin Dunz
Introduction
25(2)
System analysis by measure-valued stochastic processes
27(3)
Sedimentation in 1-d
30(4)
References
33(1)
Phenomenological Model of Sedimentation-Consolidation Processes
34(8)
R. Burger
Introduction
34(1)
Phenomenological sedimentation-consolidation model
34(3)
Analysis of the initial-boundary value problem
37(1)
Comparison with experimental data
38(2)
Conclusions and directions of future research
40(2)
References
40(2)
The Structure of Bidisperse Suspensions at Low Reynolds Numbers
42(8)
K. Hofler
S. Schwarzer
Introduction
42(1)
Numerical method
42(2)
Bidisperse suspensions
44(2)
An advection-diffusion model for polydisperse suspensions
46(4)
References
49(1)
Lattice Boltzmann Simulations of Complex Multiphase Flows
50(8)
M. Krafczyk
P. Lehmann
O. Filippova
D. Hanel
U. Lantermann
Lattice-Boltzmann simulation of gas-particle flow in complex geometry
50(4)
Introduction
50(1)
Method and results
51(3)
Direct calculation of hysteresis by Lattice-Boltzmann simulations
54(4)
Introduction
54(1)
Hysteresis
54(1)
Method and results
55(1)
Discussion
56(1)
Acknowledgements
57(1)
References
57(1)
Interface Tracking in Multiphase Flows
58(9)
A.-K. Tornberg
B. Engquist
Introduction
58(1)
The multiphase flow equations
59(3)
Discretization
60(2)
The segment projection method
62(1)
Comparison of three methods for a buoyant bubble
63(4)
References
65(2)
Section 2: Mechanics of Materials and Multiscaling 67(46)
C. Miehe
Finite Element Computation of Macroscopic Quantities in Nonconvex Minimisation Problems and Applications in Materials Science
69(11)
Soren Bartels
Carsten Carstensen
Petr Plechac
Introduction
69(2)
Scalar double-well problem and its numerical solution
71(5)
Numerical analysis of linearised phase transitions in elastic solids
76(4)
References
79(1)
Homogenization of an Initial-Boundary Value Problem Describing Evolving Microstructure
80(8)
Hans-Dieter Alber
Introduction
80(1)
A mathematical model with sharp phase interfaces
80(5)
Equations for the stress, displacement and internal variables
80(2)
Evolution equation for the phase interface, dissipation inequality
82(3)
Homogenization of the equations for materials with evolving microstructure
85(3)
References
87(1)
Aspects of Homogenization Techniques and Multigrid Solving
88(8)
C. G. Bayreuther
C. Miehe
J. Schroder
Introduction
88(1)
The basic multigrid concept
88(2)
A numerical homogenization procedure
90(1)
Transfer operators for heterogeneous structures
91(2)
Smoothing adapted transfer operators
91(1)
Transfer operators associated with unit displacements
92(1)
Algebraical motivated transfer operators
92(1)
Homogenization based transfer operators
93(1)
Comparative study of model problems
93(2)
Conclusion
95(1)
References
95(1)
Estimates on the Mixture Function for Multiphase Problems in Elasticity
96(8)
Alexander Mielke
Introduction
96(1)
Definition of the mixture function
97(2)
The H-measure associated with X
99(1)
A lower estimate
100(1)
Upper bounds
101(1)
A special case
102(2)
References
103(1)
A Two--Scale Micro--Macro--Approach to Anisotropic Finite Plasticity of Polycrystals
104(9)
C. Miehe
J. Schotte
Introduction
104(1)
A class of micro-macro-transitions at large strains
105(3)
A computational model of finite crystal plasticity
108(2)
Texture evolution in homogeneous compression test
110(3)
References
111(2)
Section 3: Solid--Fluid--Interaction 113(54)
W. Ehlers
Boundary Conditions at the Viscous Sliding Interface of Incompressible Porous Deformable Media
115(10)
G. A. Ateshian
X. Wang
Introduction
115(1)
Formulation
116(4)
Kinematic conditions
117(1)
Interface tractions
118(2)
Limiting cases
120(2)
Solid-solid interface
121(1)
Fluid-fluid interface
121(1)
Solid-fluid interface
121(1)
Biphasic-fluid interface
121(1)
Biphasic-solid interface
121(1)
Inviscid fluid phase
122(1)
Governing equations
122(1)
Discussion
123(2)
References
123(2)
Computational Experience from the Solution of Coupled Problems in Ship Dynamics
125(10)
Frank Ihlenburg
Introduction
125(1)
Physical assumptions and governing equations
125(2)
Numerical method and computational implementation
127(1)
Computational results
127(5)
Fluid-structure interaction
128(2)
Structural model adaptation
130(2)
Structural mesh refinement
132(1)
Conclusions
132(3)
References
134(1)
On the Adaptive Computation of Shear Bands in Frictional Geomaterials
135(8)
Wolfgang Ehlers
Peter Ellsiepen
Introduction
135(1)
Governing equations
136(2)
Spatial discretization and numerical tools
138(3)
Numerical example
141(2)
References
142(1)
Intrinsic Viscoelasticity of Porous Materials
143(8)
Wolfgang Ehlers
Bernd Markert
Introduction
143(1)
Governing equations
144(1)
Finite viscoelasticity law
145(2)
Examples
147(2)
Conclusions
149(2)
References
150(1)
Numerical Simulation of Fluids Interacting with Moving Rigid Bodies
151(8)
S. Meynen
M. Schafer
Introduction
151(1)
Governing equations and solution methods
152(2)
Navier-Stokes equations for moving grids
152(1)
Linear rigid body dynamics
153(1)
Coupling algorithm
154(1)
Numerical example
155(2)
Conclusions
157(2)
References
158(1)
Partitioned Analysis of Transient Nonlinear Fluid Structure Interaction Problems Including Free Surface Effects
159(8)
W. A. Wall
D. P. Mok
J. Schmidt
E. Ramm
Introduction
159(1)
CFD - Computational Fluid Dynamics
159(2)
Arbitrary Lagrangean Eulerian (ALE) formulation
160(1)
Stabilized finite element method
160(1)
Description of the free surface
161(1)
CSD - Computational Structural Dynamics
161(1)
CMD - Computational Mesh Dynamics
162(1)
Partitioned staggered analysis approach
162(3)
Algorithmic setup
163(1)
A robust iterative substructuring scheme
164(1)
Numerical examples
165(2)
Floating vertical cylinder in viscous fluid
165(1)
Cavity with oscillating top plate and flexible bottom
165(1)
References
166(1)
Section 4: Efficient Solvers and Adaptivity 167(50)
O. Steinbach
C. Wieners
Domain Decomposition Methods in the Design of High Power Electronic Devices
169(14)
R. Hoppe
Y. Iliash
G. Mazurkevitch
Introduction
169(1)
High power electronic devices and systems
170(3)
Electrothermomechanical couplings in IHV-Modules
170(2)
Minimization of parasitic effects in Converter Modules
172(1)
The mortar element methods
173(5)
Mortar methods for Lagrangian finite elements
173(3)
Mortar methods for curl-conforming edge elements
176(2)
Numerical results
178(5)
References
181(2)
Matrix Compression for the Radiation Heat Transfer in Exhaust Pipes
183(10)
M. Bebendort
S. Rjasanow
Introduction
183(1)
Mathematical model
184(3)
Approximation of the full dense matrices
187(1)
Adaptive cross approximation
188(2)
Matrix partitioning
188(1)
Low-rank approximation
189(1)
Numerical examples
190(3)
References
191(2)
An Iterative Substructuring Method with Lagrange Multipliers for Elasticity Problems Using Approximate Neumann Subdomain Solvers
193(8)
A. Klawonn
Introduction
193(1)
The FETI method
194(2)
The new domain decomposition method with approximate subdomain solves
196(2)
Numerical results
198(3)
References
200(1)
A New a Posteriori Error Estimator in Adaptive Direct Boundary Element Methods. The Neumann Problem
201(8)
H. Schulz
O. Steinbach
Introduction
201(2)
An a posteriori error estimator
203(2)
Implementation
205(2)
Numerical example
207(2)
References
208(1)
Efficient Elasto-Plastic Simulation
209(8)
C. Wieners
Introduction
209(1)
A general framework for quasi-static plasticity
210(1)
Return mapping algorithms for incremental plasticity
211(1)
Standard materials
212(1)
An example with nonlinear hardening
213(1)
The computation of the return parameter
214(1)
A numerical experiement
215(1)
Conclusion
216(1)
References
216(1)
Section 5: Contact and Fracture 217(2)
W. L. Wendland
Sensitivity and Optimal Control in Contact Mechanics
219(1)
G. Szefer
Introduction
219(1)
Setting of the optimal control and sensitivity problem
219(6)
Adjoint system
225(3)
Conclusions
228(1)
References
228(1)
On the Treatment of Contact Problems in Elasto-Plasticity
229(1)
M. Bach
C. Eck
M. Schulz
Introduction
229(1)
Problem setting
230(3)
Boundary element method
234(2)
Numerical example
236(1)
References
236(1)
On Contact Problems for Linear and Nonlinear Elastic Plates: Existence of Solutions and Application of Augmented Lagrangian Method
237(1)
W. Bielski
A. Galka
J.J. Telega
Geometrically linear plates
237(1)
Thin plates
237(2)
Reissner's plate model
239(1)
Von Karman plates
240(1)
Augmented Lagrangians methods for a class of nonconvex problems
241(2)
Example
243(2)
References
245(1)
Longitudinal Wave Propagation in Conical Rods Subject to Impacts
246(1)
P. Eberhard
B. Hu
W. Schiehlen
Introduction
246(1)
Symbolical computation for a conical rod
247(3)
Experimental investigation of longitudinal waves
250(2)
Conclusions
252(1)
References
253(1)
A Survey on Dynamic Contact Problems with Coulomb Friction
254(1)
Ch. Eck
J. Jarusek
Introduction
254(1)
The dynamic contact problem with Coulomb friction
254(3)
Frictional contact problems with heat transfer
257(4)
References
261(1)
Numerical Simulation of Noise Radiation from Rolling Tires
262(1)
L. Gaul
U. Nackenhorst
B. Nolte
Introduction
262(1)
The simulation procedure
263(1)
Numerical simulation of stationary rolling wheels
264(1)
Numerical analysis of sound radiation
265(2)
Example: A simple wheel
267(1)
Conclusions
267(2)
References
269(1)
Stress Singularities in Composites
270(1)
A.-M. Sandig
Introduction
270(1)
Linear examples: Laplacian and Lame system
271(3)
Linear elliptic boundary transmission problems in Sobolev spaces with detached asymptotics
274(1)
Semilinear problems
275(1)
Continuity and Frechet---differentiability of the semilinear operator
276(1)
Asymptotic behaviour of the solution of the semilinear problem
276(1)
References
277

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program