did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780748775163

Solid State Chemistry: An Introduction, Third Edition

by ;
  • ISBN13:

    9780748775163

  • ISBN10:

    0748775161

  • Edition: 3rd
  • Format: Paperback
  • Copyright: 2005-06-24
  • Publisher: CRC Press
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $79.95

Summary

Intended for first- and second-year undergraduates, this introduction to solid state chemistry includes practical examples of applications and modern developments to offer students the opportunity to apply their knowledge in real-life situations. The third edition of Solid State Chemistry: An Introductionhas been comprehensively revised and updated. Building a foundation with a thorough description of crystalline structures, the book presents a wide range of the synthetic and physical techniques used to prepare and characterize solids. Other fundamental discussions include:A bonding, superconductivity, and electrochemical, magnetic, optical, and conductive properties. The authors have added sections on fuel cells and electrochromic materials; conducting organic polymers, organic superconductors, and fullerenes; mesoporous solids and ALPOs; photonics; giant magnetoresistance (GMR) and colossal magnetoresistance (CMR); and p-wave (triplet) superconductors. The book also includes acompletely new chapter, which examines the solid state chemical aspects of nanoscience. Each chapter contains a set of review questions and an accompanying solutions manual is available. Solid State Chemistry: An Introduction, Third Editionis written in a clear, approachable style that enhances the material by integrating its concepts in the context of current applications and areas of promising research.

Table of Contents

Chapter 1 An Introduction to Crystal Structures 1(76)
1.1 Introduction
1(1)
1.2 Close-packing
2(4)
1.3 Body-centred and Primitive Structures
6(3)
1.4 Symmetry
9(6)
1.4.1 Axes of Symmetry
10(1)
1.4.2 Planes of Symmetry
10(2)
1.4.3 Inversion
12(1)
1.4.4 Inversion Axes and Improper Symmetry Axes
12(1)
1.4.5 Symmetry in Crystals
13(2)
1.5 Lattices and Unit Cells
15(13)
1.5.1 Lattices
15(1)
1.5.2 One- and Two-dimensional Unit Cells
15(2)
1.5.3 Translational Symmetry Elements
17(1)
1.5.4 Three-dimensional Unit Cells
18(4)
1.5.5 Miller Indices
22(3)
1.5.6 Interplanar Spacings
25(1)
1.5.7 Packing Diagrams
25(3)
1.6 Crystalline solids
28(33)
1.6.1 Ionic Solids with Formula MX
29(6)
1.6.2 Solids with General Formula MX2
35(5)
1.6.3 Other Important Crystal Structures
40(3)
1.6.4 Ionic Radii
43(7)
1.6.5 Extended Covalent Arrays
50(2)
1.6.6 Bonding In Crystals
52(2)
1.6.7 Atomic Radii
54(1)
1.6.8 Molecular Structures
55(1)
1.6.9 Silicates
56(5)
1.7 Lattice Energy
61(10)
1.7.1 The Born-Haber Cycle
62(1)
1.7.2 Calculating Lattice Energies
63(5)
1.7.3 Calculations Using Thermochemical Cycles and Lattice Energies
68(3)
1.8 Conclusion
71(1)
Questions
72(5)
Chapter 2 Physical Methods for Characterizing Solids 77(48)
2.1 Introduction
77(1)
2.2 X-ray Diffraction
77(4)
2.2.1 Generation of X-rays
77(2)
2.2.2 Diffraction of X-rays
79(2)
2.3 Powder Diffraction
81(10)
2.3.1 Powder Diffraction Patterns
81(1)
2.3.2 Absences Due to Lattice Centring
82(5)
2.3.3 Systematic Absences Due to Screw Axes and Glide Planes
87(1)
2.3.4 Uses of Powder X-ray Diffraction
88(3)
2.4 Single Cystal X-ray Diffraction
91(6)
2.4.1 The Importance of Intensities
92(3)
2.4.2 Solving Single Crystal Structures
95(2)
2.5 Neutron Diffraction
97(4)
2.5.1 Uses of Neutron Diffraction
98(3)
2.6 Electron Microscopy
101(3)
2.6.1 Scanning Electron Microscopy (SEM)
101(1)
2.6.2 Transmission Electron Microscopy (TEM)
101(1)
2.6.3 Scanning Transmission Electron Microscopy (STEM)
102(1)
2.6.4 Energy Dispersive X-ray Analysis (EDAX)
102(2)
2.7 X-ray Absorption Spectroscopy
104(5)
2.7.1 Extended X-ray Absorption Fine Structure (EXAFS)
104(4)
2.7.2 X-ray Absorption Near-Edge Structure (XANES)
108(1)
2.8 Solid State Nuclear Magnetic Resonance Spectroscopy (MAS NMR)
109(4)
2.9 Thermal Analysis
113(1)
2.9.1 Differential Thermal Analysis (DTA)
113(1)
2.9.2 Thermogravimetric Analysis (TGA)
114(1)
2.9.3 Differential Scanning Calorimetry (DSC)
114(1)
2.10 Scanning Tunnelling Microscopy (STM) and Atomic Force Microscopy (AFM)
114(2)
2.11 Temperature Programmed Reduction (TPR)
116(2)
2.12 Other Techniques
118(1)
Questions
119(6)
Chapter 3 Preparative Methods 125(30)
3.1 Introduction
125(1)
3.2 High Temperature Ceramic Methods
126(8)
3.2.1 Direct Heating of Solids
126(3)
3.2.2 Reducing the Particle Size and Lowering the Temperature
129(5)
3.3 Microwave Synthesis
134(2)
3.3.1 The High Temperature Superconductor YBa2Cu3O7-x
135(1)
3.4 Combustion Synthesis
136(1)
3.5 High Pressure Methods
137(6)
3.5.1 Hydrothermal Methods
137(4)
3.5.2 High Pressure Gases
141(1)
3.5.3 Hydrostatic Pressures
141(1)
3.5.4 Synthetic Diamonds
142(1)
3.5.5 High Temperature Superconductors
143(1)
3.5.6 Harder Than Diamond
143(1)
3.6 Chemical Vapour Deposition (CVD)
143(8)
3.6.1 Preparation of Semiconductors
143(1)
3.6.2 Diamond Films
144(1)
3.6.3 Lithium Niobate
145(1)
3.7 Preparing Single Crystals
145(1)
3.7.1 Epitaxy Methods
146(1)
3.7.2 Chemical Vapour Transport
147(3)
3.7.3 Solution Methods
150(1)
3.8 Intercalation
151(1)
3.8.1 Graphite Intercalation Compounds
151(1)
3.8.2 Titanium Disulfide
152(1)
3.8.3 Pillared Clays
152(1)
3.9 Choosing a Method
152(1)
Questions
153(2)
Chapter 4 Bonding in Solids and Electronic Properties 155(20)
4.1 Introduction
155(1)
4.2 Bonding in Solids - Free Electron Theory
155(6)
4.2.1 Electronic Conductivity
159(2)
4.3 Bonding in Solids - Molecular Orbital Theory
161(4)
4.3.1 Simple Metals
164(1)
4.4 Semiconductors - Si and Ge
165(6)
4.4.1 Photoconductivity
167(1)
4.4.2 Doped Semiconductors
168(1)
4.4.3 The p-n Junction - Field-Effect Transistors
169(2)
4.5 Bands in Compounds - Gallium Arsenide
171(1)
4.6 Bands in d-BlockCompounds - Transition Metal Monoxides
172(1)
Questions
173(2)
Chapter 5 Defects and Non-Stoichiometry 175(68)
5.1 Point Defects - An Introduction
175(1)
5.2 Defects and their Concentration
175(8)
5.2.1 Intrinsic Defects
175(3)
5.2.2 The Concentration of Defects
178(4)
5.2.3 Extrinsic Defects
182(1)
5.3 Ionic Conductivity in Solids
183(5)
5.4 Solid Electrolytes
188(22)
5.4.1 Fast-ion Conductors: Silver Ion Conductors
189(3)
5.4.2 Fast-ion Conductors: Oxygen Ion Conductors
192(3)
5.4.3 Fast-ion Conductors: Sodium Ion Conductors
195(2)
5.4.4 Applications
197(13)
5.5 Photography
210(1)
5.6 Colour Centres
211(1)
5.7 Non-stoichiometric Compounds
212(10)
5.7.1 Introduction
212(2)
5.7.2 Non-stoichiometry in Wustite
214(4)
5.7.3 Uranium Dioxide
218(2)
5.7.4 The Titanium Monoxide Structure
220(2)
5.8 Planar Defects
222(6)
5.8.1 Crystallographic Shear Planes
223(4)
5.8.2 Planar Intergrowths
227(1)
5.9 Three-dimensional Defects
228(4)
5.9.1 Block Structures
228(1)
5.9.2 Pentagonal Columns
229(2)
5.9.3 Infinitely Adaptive Structures
231(1)
5.10 Electronic Properties of Non-stoichiometric Oxides
232(5)
5.11 Conclusions
237(1)
Questions
238(5)
Chapter 6 Carbon-Based Electronics 243(16)
6.1 Introduction
243(1)
6.2 Polyacetylene and Related Polymers
243(5)
6.2.1 The Discovery of Polyacetylene
243(3)
6.2.2 Bonding in Polyacetylene and Related Polymers
246(1)
6.2.3 Organic LEDs
247(1)
6.3 Molecular Metals
248(3)
6.3.1 One-dimensional Molecular Metals
248(1)
6.3.2 Two-dimensional Molecular Metals
248(3)
6.4 Polymers and Ionic Conduction - Rechargeable Lithium Batteries
251(2)
6.5 Carbon
253(4)
6.5.1 Graphite
253(2)
6.5.2 Intercalation Compounds of Graphite
255(1)
6.5.3 Buckminster Fullerene
256(1)
Questions
257(2)
Chapter 7 Zeolites and Related Structures 259(34)
7.1 Introduction
259(1)
7.2 Composition and Structure
259(11)
7.2.1 Frameworks
260(3)
7.2.2 Nomenclature
263(1)
7.2.3 Si/Al Ratios
264(1)
7.2.4 Exchangeable Cations
264(1)
7.2.5 Channels and Cavities
265(5)
7.3 Synthesis of Zeolites
270(2)
7.4 Structure Determination
272(1)
7.5 Uses of Zeolites
273(10)
7.5.1 Dehydrating Agents
273(1)
7.5.2 Zeolites As Ion Exchangers
274(1)
7.5.3 Zeolites As Adsorbents
274(2)
7.5.4 Zeolites As Catalysts
276(7)
7.6 Mesoporous Aluminosilicate Structures
283(2)
7.7 Other Framework Structures
285(2)
7.8 New Materials
287(1)
7.9 Clay Minerals
288(2)
7.10 Postscript
290(1)
Questions
291(2)
Chapter 8 Optical Properties of Solids 293(20)
8.1 Introduction
293(1)
8.2 The Interaction of Light with Atoms
293(6)
8.2.1 The Ruby Laser
295(3)
8.2.2 Phosphors in Fluorescent Lights
298(1)
8.3 Absorption and Emission of Radiation in Semiconductors
299(7)
8.3.1 Light-Emitting Diodes
303(1)
8.3.2 The Gallium Arsenide Laser
304(1)
8.3.3 Quantum Wells - Blue Lasers
305(1)
8.4 Optical Fibres
306(2)
8.5 Photonic Crystals
308(2)
Questions
310(3)
Chapter 9 Magnetic and Dielectric Properties 313(26)
9.1 Introduction
313(1)
9.2 Magnetic Susceptibility
313(3)
9.3 Paramagnetism in Metal Complexes
316(2)
9.4 Ferromagnetic Metals
318(6)
9.4.1 Ferromagnetic Domains
321(2)
9.4.2 Permanent Magnets
323(1)
9.5 Ferromagnetic Compounds - Chromium Dioxide
324(1)
9.5.1 Audiotapes
324(1)
9.6 Antiferromagnetism - Transition Metal Monoxides
325(1)
9.7 Ferrimagnetism - Ferrites
326(2)
9.8 Giant, Tunnelling, and Colossal Magnetoresistance
328(3)
9.8.1 Giant Magnetoresistance
328(1)
9.8.2 Hard Disk Read Heads
329(1)
9.8.3 Tunnelling and Colossal Magnetoresistance
330(1)
9.9 Electrical Polarisation
331(1)
9.10 Piezoelectric Crystals - α-quartz
332(2)
9.11 The Ferroelectric Effect
334(4)
9.11.1 Multilayer Ceramic Capacitors
337(1)
Questions
338(1)
Chapter 10 Superconductivity 339(16)
10.1 Introduction
339(1)
10.2 Conventional Superconductors
340(5)
10.2.1 The Discovery of Superconductors
340(1)
10.2.2 The Magnetic Properties of Superconductors
340(3)
10.2.3 Josephson Effects
343(1)
10.2.4 The BCS Theory of Superconductivity
343(2)
10.3 High Temperature Superconductors
345(6)
10.3.1 The Crystal Structures of High Temperature Superconductors
346(4)
10.3.2 Theory of High Tc Superconductors
350(1)
10.4 Ferromagnetic Superconductors
351(1)
10.5 Uses of High Temperature Superconductors
351(2)
Questions
353(2)
Chapter 11 Nanoscience 355(22)
11.1 Introduction
355(1)
11.2 Consequences of the Nanoscale
356(9)
11.2.1 Nanoparticle Morphology
356(1)
11.2.2 Electronic Structure
357(3)
11.2.3 Optical Properties
360(3)
11.2.4 Magnetic Properties
363(2)
11.2.5 Mechanical Properties
365(1)
11.2.6 Melting
365(1)
11.3 Examples
365(7)
11.3.1 One-dimensional Nanomaterials
365(2)
11.3.2 Two-dimensional Nanomaterials
367(2)
11.3.3 Three-dimensional Nanomaterials
369(3)
11.4 Manipulating Atoms and Molecules
372(5)
11.4.1 Scanning Tunnelling Microscopy
373(1)
11.4.2 Atomic Force Microscopy
374(1)
11.4.3 Nanostencils
375(1)
11.4.4 Optical Tweezers
375(1)
11.4.5 Molecular Lithography
376(1)
11.4.6 Data Storage
376(1)
Further Reading 377(4)
Answers Odd Number Questions 381(16)
Index 397

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program