Calculus hasnrs"t changed, but readers have. Todayrs"s readers have been raised on immediacy and the desire for relevance, and they come to calculus with varied mathematical backgrounds.Thomasrs" Calculus, Twelfth Edition, helps readers successfully generalize and apply the key ideas of calculus through clear and precise explanations, clean design, thoughtfully chosen examples, and superior exercise sets. Thomas offers the right mix of basic, conceptual, and challenging exercises, along with meaningful applications. This significant revision features more examples, more mid-level exercises, more figures, improved conceptual flow, and MyMathLab reg; , the best in technology for learning and teaching. KEY TOPICS:Functions; Limits and Continuity; Differentiation; Applications of Derivatives; Integration; Applications of Definite Integrals; Transcendental Functions; Techniques of Integration; First-Order Differential Equations; Infinite Sequences and Series; Parametric Equations and Polar Coordinates; Vectors and the Geometry of Space; Vector-Valued Functions and Motion in Space; Partial Derivatives; Multiple Integrals; Integration in Vector Fields; Second-Order Differential Equations MARKET: For all readers interested in Calculus.

**Joel Hass** received his PhD from the University of California—Berkeley. He is currently a professor of mathematics at the University of California—Davis. He has coauthored six widely used calculus texts as well as two calculus study guides. He is currently on the editorial board of *Geometriae Dedicata* and Media-Enhanced Mathematics. He has been a member of the Institute for Advanced Study at Princeton University and of the Mathematical Sciences Research Institute, and he was a Sloan Research Fellow. Hass’s current areas of research include the geometry of proteins, three dimensional manifolds, applied math, and computational complexity. In his free time, Hass enjoys kayaking.

**Maurice D. Weir** holds a DA and MS from Carnegie-Mellon University and received his BS at Whitman College. He is a Professor Emeritus of the Department of Applied Mathematics at the Naval Postgraduate School in Monterey, California. Weir enjoys teaching Mathematical Modeling and Differential Equations. His current areas of research include modeling and simulation as well as mathematics education. Weir has been awarded the Outstanding Civilian Service Medal, the Superior Civilian Service Award, and the Schieffelin Award for Excellence in Teaching. He has coauthored eight books, including the *University Calculus *series and the twelfth edition of *Thomas’ Calculus*.

**George B. Thomas, Jr.** (late) of the Massachusetts Institute of Technology, was a professor of mathematics for thirty-eight years; he served as the executive officer of the department for ten years and as graduate registration officer for five years. Thomas held a spot on the board of governors of the Mathematical Association of America and on the executive committee of the mathematics division of the American Society for Engineering Education. His book,

*Calculus and Analytic Geometry*, was first published in 1951 and has since gone through multiple revisions. The text is now in its twelfth edition and continues to guide students through their calculus courses. He also co-authored monographs on mathematics, including the text

*Probability and Statistics*.

**1. Functions**

1.1 Functions and Their Graphs

1.2 Combining Functions; Shifting and Scaling Graphs

1.3 Trigonometric Functions

1.4 Graphing with Calculators and Computers

**2. Limits and Continuity**

2.1 Rates of Change and Tangents to Curves

2.2 Limit of a Function and Limit Laws

2.3 The Precise Definition of a Limit

2.4 One-Sided Limits

2.5 Continuity

2.6 Limits Involving Infinity; Asymptotes of Graphs

**3. Differentiation**

3.1 Tangents and the Derivative at a Point

3.2 The Derivative as a Function

3.3 Differentiation Rules

3.4 The Derivative as a Rate of Change

3.5 Derivatives of Trigonometric Functions

3.6 The Chain Rule

3.7 Implicit Differentiation

3.8 Related Rates

3.9 Linearization and Differentials

**4. Applications of Derivatives**

4.1 Extreme Values of Functions

4.2 The Mean Value Theorem

4.3 Monotonic Functions and the First Derivative Test

4.4 Concavity and Curve Sketching

4.5 Applied Optimization

4.6 Newton's Method

4.7 Antiderivatives

**5. Integration**

5.1 Area and Estimating with Finite Sums

5.2 Sigma Notation and Limits of Finite Sums

5.3 The Definite Integral

5.4 The Fundamental Theorem of Calculus

5.5 Indefinite Integrals and the Substitution Method

5.6 Substitution and Area Between Curves

**6. Applications of Definite Integrals**

6.1 Volumes Using Cross-Sections

6.2 Volumes Using Cylindrical Shells

6.3 Arc Length

6.4 Areas of Surfaces of Revolution

6.5 Work and Fluid Forces

6.6 Moments and Centers of Mass

**7. Transcendental Functions**

7.1 Inverse Functions and Their Derivatives

7.2 Natural Logarithms

7.3 Exponential Functions

7.4 Exponential Change and Separable Differential Equations

7.5 Indeterminate Forms and L'Hôpital's Rule

7.6 Inverse Trigonometric Functions

7.7 Hyperbolic Functions

7.8 Relative Rates of Growth

**8. Techniques of Integration**

8.1 Integration by Parts

8.2 Trigonometric Integrals

8.3 Trigonometric Substitutions

8.4 Integration of Rational Functions by Partial Fractions

8.5 Integral Tables and Computer Algebra Systems

8.6 Numerical Integration

8.7 Improper Integrals

**9. First-Order Differential Equations**

9.1 Solutions, Slope Fields, and Euler's Method

9.2 First-Order Linear Equations

9.3 Applications

9.4 Graphical Solutions of Autonomous Equations

9.5 Systems of Equations and Phase Planes

**10. Infinite Sequences and Series**

10.1 Sequences

10.2 Infinite Series

10.3 The Integral Test

10.4 Comparison Tests

10.5 The Ratio and Root Tests

10.6 Alternating Series, Absolute and Conditional Convergence

10.7 Power Series

10.8 Taylor and Maclaurin Series

10.9 Convergence of Taylor Series

10.10 The Binomial Series and Applications of Taylor Series

**11. Parametric Equations and Polar Coordinates**

11.1 Parametrizations of Plane Curves

11.2 Calculus with Parametric Curves

11.3 Polar Coordinates

11.4 Graphing in Polar Coordinates

11.5 Areas and Lengths in Polar Coordinates

11.6 Conic Sections

11.7 Conics in Polar Coordinates