CART

(0) items

University Physics for the Physical and Life Sciences : Volume I,9781429204934
This item qualifies for
FREE SHIPPING!

FREE SHIPPING OVER $59!

Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

University Physics for the Physical and Life Sciences : Volume I

by ;
Edition:
1st
ISBN13:

9781429204934

ISBN10:
1429204931
Format:
Paperback
Pub. Date:
2/24/2012
Publisher(s):
W. H. Freeman
List Price: $136.52

Buy New Textbook

Usually Ships in 7-10 Business Days
N9781429204934
$133.11

Rent Textbook

We're Sorry
Sold Out

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

More New and Used
from Private Sellers
Starting at $53.05
See Prices

Questions About This Book?

What version or edition is this?
This is the 1st edition with a publication date of 2/24/2012.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.

Summary

Available for Fall 2012 classes. Authors Philip R. Kesten and David L. Tauck take a fresh and innovative approach to the university physics (calculus-based) course. They combine their experience teaching physics (Kesten) and biology (Tauck) to create a text that engages students by using biological and medical applications and examples to illustrate key concepts. University Physics for the Physical and Life Sciencesteaches the fundamentals of introductory physics, while weaving in formative physiology, biomedical, and life science topics to help students connect physics to living systems. The authors help life science and pre-med students develop a deeper appreciation for why physics is important to their future work and daily lives. With its thorough coverage of concepts and problem-solving strategies, University Physics for the Physical and Life Sciencescan also be used as a novel approach to teaching physics to engineers and scientists or for a more rigorous approach to teaching the college physics (algebra-based) course. University Physics for the Physical and Life Sciencesutilizes six key features to help students learn the principle concepts of university physics: A seamless blend of physics and physiology with interesting examples of physics in students' lives, A strong focus on developing problem-solving skills (Set Up, Solve, and Reflect problem-solving strategy), Conceptual questions (Got the Concept) built into the flow of the text, "Estimate It!" problems that allow students to practice important estimation skills Special attention to common misconceptions that often plague students, and Detailed artwork designed to promote visual learning Volume I: 1-4292-0493-1 Volume II: 1-4292-8982-1

Table of Contents

VOLUME I
1  Physics: An Introduction
1. Speaking Physics
2. Physical Quantities and Units
3. Prefixes and Conversions
4. Significant Figures
5. Solving Problems
6. Dimensional Analysis
 
2  Linear Motion
1. Constant Velocity Motion
2. Acceleration
3. Motion under Constant Acceleration
4. Gravity at the Surface of Earth
 
3  Motion in Two Dimensions
1. Horizontal and Vertical Motions are Independent
2. Vectors
3. Vector Components:  Adding Vectors, Analyzing by Component
4. Projectile Motion
5. Uniform Circular Motion 
 
4  Newton’s Laws of Motion
1. Newton’s First Law
2. Newton’s Second Law
3. Mass and Weight
4. Free Body Diagrams
5. Newton’s Third Law
6. Force, Acceleration, Motion
 
5  Applications of Newton’s Laws
1. Static Friction
2. Kinetic Friction
3. Working with Friction
4. Drag Force
5. Forces and Uniform Circular Motion
 
6  Work And Energy
1. Work
2. The Work – Energy Theorem
3. Applications of the Work – Energy Theorem 
4. Work Done by a Variable Force 
5. Potential Energy
6. Conservation of Energy
7. Nonconservative Forces
8. Using Energy Conservation
                        
7  Linear Momentum
1. Linear Momentum
2. Conservation of Momentum
3. Inelastic Collisions
4. Contact Time
5. Elastic Collisions
6. Center of Mass
                                                                                                                       
8  Rotational Motion
1. Rotational Kinetic Energy
2. Moment of Inertia  
3. The Parallel-Axis Theorem
4. Conservation of Energy Revisited
5. Rotational Kinematics  
6. Torque                                                    
7. Angular Momentum  
8. The Vector Nature of Rotational Quantities  
                                                                                  
9  Elasticity and Fracture
1. Tensile Stress and Strain
2. Volume Stress and Strain
3. Shear Stress and Strain
4. Elasticity and Fracture
 
10  Gravitation
1. Newton’s Universal Law of Gravitation
2. The Shell Theorem
3. Gravitational Potential Energy  
4. Kepler’s Laws
                                                                                                                                
11  Fluids
1. Density
2. Pressure
3. Pressure versus Depth in a Fluid
4. Atmospheric Pressure and Common Pressure Units
5. Pressure Difference and Net Force
6. Pascal’s Principle
7. Buoyancy – Archimedes’ Principle
8. Fluids in Motion and Equation of Continuity
9. Fluid Flow – Bernoulli’s Equation
10. Viscous Fluid Flow
 
12  Oscillations
1. Simple Harmonic Motion
2. Oscillations Described
3. Energy Considerations
4. The Simple Pendulum
5. Physical Oscillators
6. The Physical Pendulum
7. The Damped Oscillator
8. The Forced Oscillator
 
13  Waves
1. Types of Waves
2. Mathematical Description of a Wave
3. Wave Speed
4. Superposition  and Interference
5. Transverse Standing Waves  
6  Longitudinal Standing Waves  
7. Beats
8. Volume, Intensity, and Sound Level
9. Moving Sources and Observers of Waves
 
14  Thermodynamics I                                                 
1. Temperature                                      
2. A Molecular View of Temperature
3. Mean Free Path
4. Thermal Expansion
5. Heat 
6. Latent Heat
7. Heat Transfer: Radiation, Convection, Conduction 
                                                                                     
15  Thermodynamics II                                
1. The First Law of Thermodynamics
2. Thermodynamic Processes
3. The Second and Third Laws of Thermodynamics              
4. Gases
5. Entropy
 
VOLUME II
16  Electrostatics I

1. Electric Charge
2. Coulomb’s Law
3. Conductors and Insulators
4. Electric Field
5. Electric Field for some Objects
6. Gauss’s Law
7. Applications of Gauss’s Law
 
17  Electrostatics II
1. Electric Potential
2. Equipotential Surfaces
3. Electrical Potential due to Certain Charge Distributions
4. Capacitance
5. Energy Stored in a Capacitor
6. Capacitors in Series and Parallel
7. Dielectrics
 
18  Moving Charge 
1. Current
2. Resistance and Resistivity
3. Physical and Physiological Resistors
4. Direct Current Circuits
5. Resistors in Series and Parallel
6. Power
7. Series RC Circuits
8. Bioelectricity

19  Magnetism
1. Magnetic Force and Magnetic Field
2. Magnetic Force on a Current
3. Magnetic Field and Current –the Biot-Savart Law
4. Magnetic Field and Current–Ampère’s Law
5. Magnetic Force between Current-Carrying Wires
 
20  Magnetic Induction
1. Faraday’s Law of Induction
2. Lenz’s Law
3. Applications of Faraday’s and Lenz’s Laws
4. Inductance
5. LC Circuits
6. LR Circuits
 
21  AC Circuits
1. Alternating Current
2. Transformers
3. The Series LRC Circuit
4. L, R, C Separately With AC
5. L, R, C In Series With AC
6. Applications of a Series LRC Circuit
 
22  Electromagnetic Waves
1. Electromagnetic Waves
2. Maxwell’s Equations
 
23  Wave Properties of Light
1. Refraction
2. Total Internal Reflection
3. Dispersion
4. Polarization
5. Thin Film Interference
6. Diffraction
7. Circular Apertures
 
24  Geometrical Optics
1. Plane Mirrors
2. Spherical Concave Mirrors, a Qualitative Look
3. Spherical Concave Mirrors, a Quantitative Look
4. Spherical Convex Mirrors, a Qualitative Look
5. Spherical Convex Mirrors, a Quantitative Look
6. Lenses, a Qualitative Look
7. Lenses, a Quantitative Look
 
25  Relativity
1. Newtonian Relativity
2. The Michelson and Morley Experiment
3,  Special Relativity, Time Dilation
4.  The Lorentz Transformation, Length Contraction
5.  Lorentz Velocity Transformation
6.  Relativistic Momentum and Energy
7.  General Relativity
 
26  Modern and Atomic Physics
1. Blackbody Radiation
2. Photoelectric Effect
3. Compton Effect
4. Wave Nature of Particles
5. The Atom: Rutherford and Bohr
6. The Atom: Energy Levels and Spectra
 
27  Nuclear Physics
1. The Nucleus
2. Binding Energy
3. Fission
4. Fusion
5. Nuclear radiation
 
28  Particle Physics
1. The Standard Model:  Particles
2. The Standard Model:  Forces
3. Matter, Antimatter, Dark Matter


Please wait while the item is added to your cart...