9781118558034

Waves Propagation in Fluids Models and Numerical Techniques

by
  • ISBN13:

    9781118558034

  • ISBN10:

    1118558030

  • Edition: 2nd
  • Format: eBook
  • Copyright: 2013-01-14
  • Publisher: Wiley-ISTE

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $218.66 Save up to $21.87
  • Rent Book $196.79
    Add to Cart Free Shipping

    TERM
    PRICE
    DUE

Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Summary

This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics.

The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves.

Finite difference-, finite volume- and finite element-based numerical methods (including discontinuous Galerkin techniques) are covered and applied to various physical fields. Additional chapters include the treatment of geometric source terms, as well as direct and adjoint sensitivity modeling for hyperbolic conservation laws. A concluding chapter is devoted to practical recommendations to the modeler.
Application exercises with on-line solutions are proposed at the end of the chapters.

Rewards Program

Write a Review