Additionally, ceramic strength and fatigue testing, ceramic fractographical and flaw population analyses, Weibull analysis strength-size-scaling, and probabilistic life prediction and design of structural ceramic components constitutive another primary research objective. In support of all these efforts, both conventional and microstructural-level finite element stress analyses and microstructure characterization are performed. He is the author or co-author of over 100 technical publications and has given over 80 presentations, and is the co-developer of µ-FEA software.
Edgar Lara-Curzio is a Distinguished Research Staff Member and the leader of the Mechanical Properties and Mechanics Group at Oak Ridge National Laboratory. Since 1999 he has been serving as leader of the Mechanical Characterization and Analysis User Center in ORNL’s High Temperature Materials Laboratory. Lara-Curzio received a B.Sc. degree in Engineering Physics from the Metropolitan University in Mexico City in 1986 and a Ph.D. in Materials Engineering from Rensselaer Polytechnic Institute, Troy NY, in 1992.
His research work has been focused on studying the mechanical behavior, durability and reliability of structural and functional materials, on understanding the relationships among their processing, microstructure and properties, studying the effect of service environment on their properties and on developing models to describe their behavior and to predict their service life.
Dr. Lara-Curzio has co-edited 6 books and has authored 4 book chapters and more than 140 publications in refereed journals and conference proceedings.
Preface | |
Introduction | |
In Vitro Evaluation | |
Initial In Vitro Interaction of Human Osteoblasts with Nanostructured Hydroxyapatite (NHA) | |
Osteoblast Response to Zinc-Doped Sintered p-Tricalcium Phosphate | |
Determination of the Spatial Resolution of Micro-Focus X-Ray CT System with a Standard Specimen | |
Processing of Biomaterials | |
Hydroxyapatite Hybridized with Metal Oxides for Biomedical Applications | |
Preparation of Self-setting Cement-Based Micro- and Macroporous Granules of Carbonated Apatitic Calcium Phosphate | |
A Self-setting, Monetite (CaHPO,) Cement for Skeletal Repair | |
Chemically Bonded Ceramics Based on Ca-Aluminates as Biomaterials | |
A Theoretical and Mathematical Basis Towards Dispersing Nanoparticles and Biological Agents in a Non Polar Solvent for Fabricating Porous Materials | |
Preparation of Hydroxyapatite and Calcium Phosphate Bioceramic Materials from the Aqueous Solution at Room Temperature | |
Hydroxyapatite Coatings Produced by Plasma Spraying of Organic Based Solution Precursor | |
Visible-Light Photocatalytic Fibers for Inactivation of Pseudomonas Aeruginosa | |
Precipitation Mechanisms of Hydroxyapatite Powder in the Different Aqueous Solutions | |
Conversion of Bioactive Silicate (45S5), Borate, and Borosilicate Glasses to Hydroxyapatite in Dilute Phosphate Solution | |
Dental Ceramics | |
Variable Frequency Microwave (VFM) Processing: A New Tool to Crystallize Lithium Disilicate Glass | |
Author Index | |
Table of Contents provided by Publisher. All Rights Reserved. |
The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.