rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780849337482

Autonomous Mobile Robots: Sensing, Control, Decision Making and Applications

by ;
  • ISBN13:

    9780849337482

  • ISBN10:

    0849337488

  • Format: Hardcover
  • Copyright: 2006-05-04
  • Publisher: CRC Press

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $265.00 Save up to $207.58
  • Rent Book $188.81
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-5 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

How To: Textbook Rental

Looking to rent a book? Rent Autonomous Mobile Robots: Sensing, Control, Decision Making and Applications [ISBN: 9780849337482] for the semester, quarter, and short term or search our site for other textbooks by Ge; Shuzhi Sam. Renting a textbook can save you up to 90% from the cost of buying.

Summary

It has long been the goal of engineers to develop tools that enhance our ability to do work, increase our quality of life, or perform tasks that are either beyond our ability, too hazardous, or too tedious to be left to human efforts. Autonomous mobile robots are the culmination of decades of research and development, and their potential is seemingly unlimited.Roadmap to the FutureServing as the first comprehensive reference on this interdisciplinary technology, Autonomous Mobile Robots: Sensing, Control, Decision Making, and Applications authoritatively addresses the theoretical, technical, and practical aspects of the field. The book examines in detail the key components that form an autonomous mobile robot, from sensors and sensor fusion to modeling and control, map building and path planning, and decision making and autonomy, and to the final integration of these components for diversified applications.Trusted GuidanceA duo of accomplished experts leads a team of renowned international researchers and professionals who provide detailed technical reviews and the latest solutions to a variety of important problems. They share hard-won insight into the practical implementation and integration issues involved in developing autonomous and open robotic systems, along with in-depth examples, current and future applications, and extensive illustrations.For anyone involved in researching, designing, or deploying autonomous robotic systems, Autonomous Mobile Robots is the perfect resource.

Table of Contents

I Sensors and Sensor Fusion 1(186)
Chapter 1 Visual Guidance for Autonomous Vehicles: Capability and Challenges
5(36)
Andrew Shacklock, Jian Xu, and Han Wang
1.1 Introduction
6(2)
1.1.1 Context
6(1)
1.1.2 Classes of UGV
7(1)
1.2 Visual Sensing Technology
8(7)
1.2.1 Visual Sensors
8(1)
1.2.1.1 Passive imaging
9(1)
1.2.1.2 Active sensors
10(2)
1.2.2 Modeling of Image Formation and Calibration
12(1)
1.2.2.1 The ideal pinhole model
12(1)
1.2.2.2 Calibration
13(2)
1.3 Visual Guidance Systems
15(18)
1.3.1 Architecture
15(1)
1.3.2 World Model Representation
15(2)
1.3.3 Physical Limitations
17(2)
1.3.4 Road and Vehicle Following
19(1)
1.3.4.1 State-of-the-art
19(1)
1.3.4.2 A road camera model
21(2)
1.3.5 Obstacle Detection
23(1)
1.3.5.1 Obstacle detection using range data
23(1)
1.3.5.2 Stereo vision
24(1)
1.3.5.3 Application examples
26(2)
1.3.6 Sensor Fusion
28(5)
1.4 Challenges and Solutions
33(3)
1.4.1 Terrain Classification
33(1)
1.4.2 Localization and 3D Model Building from Vision
34(2)
1.5 Conclusion
36(1)
Acknowledgments
37(1)
References
37(3)
Biographies
40(1)
Chapter 2 Millimeter Wave RADAR Power-Range Spectra Interpretation for Multiple Feature Detection
41(58)
Martin Adams and Ebi Jose
2.1 Introduction
42(2)
2.2 Related Work
44(1)
2.3 FMCW RADAR Operation and Range Noise
45(3)
2.3.1 Noise in FMCW Receivers and Its Effect on Range Detection
47(1)
2.4 RADAR Range Spectra Interpretation
48(16)
2.4.1 RADAR Range Equation
50(1)
2.4.2 Interpretation of RADAR Noise
50(1)
2.4.2.1 Thermal noise
51(1)
2.4.2.2 Phase noise
51(2)
2.4.3 Noise Analysis during Target Absence and Presence
53(1)
2.4.3.1 Power-noise estimation in target absence
53(1)
2.4.3.2 Power-noise estimation in target presence
57(3)
2.4.4 Initial Range Spectra Prediction
60(4)
2.5 Constant False Alarm Rate Processor for True Target Range Detection
64(4)
2.5.1 The Effect of the High Pass Filter on CFAR
65(1)
2.5.1.1 Missed detections with CFAR
66(1)
2.5.1.2 False alarms with CFAR
67(1)
2.6 Target Presence Probability Estimation for True Target Range Detection
68(8)
2.6.1 Target Presence Probability Results
72(2)
2.6.2 Merits of the Proposed Algorithm over Other Feature Extraction Techniques
74(2)
2.7 Multiple Line-of-Sight Targets — RADAR Penetration
76(3)
2.8 RADAR-Based Augmented State Vector
79(10)
2.8.1 Process Model
80(4)
2.8.2 Observation (Measurement) Model
84(1)
2.8.2.1 Predicted power observation formulation
85(4)
2.9 Multi-Target Range Bin Prediction — Results
89(4)
2.10 Conclusions
93(1)
Acknowledgments
94(1)
References
95(2)
Biographies
97(2)
Chapter 3 Data Fusion via Kalman Filter: GPS and INS
99(50)
Jingrong Cheng, Yu Lu, Elmer R. Thomas, and Jay A. Farrell
3.1 Introduction
100(2)
3.1.1 Data Fusion—GPS and INS
101(1)
3.2 Kalman Filter
102(11)
3.2.1 Stochastic Process Models
102(1)
3.2.1.1 Computation of Φ and Qk
104(1)
3.2.2 Basic KF
105(1)
3.2.2.1 Implementation issues
107(2)
3.2.3 Extended KF
109(4)
3.3 GPS Navigation System
113(15)
3.3.1 GPS Measurements
113(2)
3.3.2 Single-Point GPS Navigation Solution
115(4)
3.3.3 KF for Stand-Alone GPS Solutions
119(1)
3.3.3.1 Clock model
120(1)
3.3.3.2 Stationary user (P model)
121(1)
3.3.3.3 Low dynamic user (PV Model)
122(1)
3.3.3.4 High dynamic user (PVA model)
122(1)
3.3.3.5 GPS KF examples
123(1)
3.3.3.6 Summary
127(1)
3.4 Inertial Navigation System
128(4)
3.4.1 Strapdown System Mechanizations
129(2)
3.4.2 Error Model of INS System
131(1)
3.4.3 EKF Latency Compensation
131(1)
3.5 Integration of GPS and INS
132(10)
3.5.1 INS with GPS Resetting
133(1)
3.5.2 GPS Aided INS
133(1)
3.5.2.1 Loosely coupled system
134(1)
3.5.2.2 Tightly coupled system
135(7)
3.6 Chapter Summary
142(1)
Acknowledgments
143(1)
References
144(2)
Biographies
146(3)
Chapter 4 Landmarks and Triangulation in Navigation
149(38)
Huosheng Hu, Julian Ryde, and Jiali Shen
4.1 Introduction
150(2)
4.2 Landmark-Based Navigation
152(2)
4.3 Laser Scanner and Retro-Reflective Landmarks
154(6)
4.3.1 Laser Scanner and Angle Observation
154(1)
4.3.2 Triangulation Algorithm
155(2)
4.3.3 KF-Based Navigation Algorithm
157(2)
4.3.4 Implementation and Results
159(1)
4.4 Vision and Digital Landmarks
160(13)
4.4.1 Landmark Recognition
161(1)
4.4.1.1 Region finding module
161(1)
4.4.1.2 Digits finding module
163(1)
4.4.1.3 Digits recognition module
163(2)
4.4.2 Position Estimation
165(1)
4.4.2.1 Triangulation method
166(2)
4.4.3 Least Square Estimator (LSE)
168(1)
4.4.3.1 Single-landmark LSE (SLSE)
169(1)
4.4.3.2 Dual-landmark LSE (DLSE)
169(1)
4.4.4 Implementation and Results
170(3)
4.5 SICK Laser Scanner and Geometric Landmarks
173(10)
4.5.1 Circular Hough Transform
174(1)
4.5.2 Least Squares Fitting of Circles
175(4)
4.5.3 Cooperative Position Estimation
179(1)
4.5.4 Implementation and Results
180(3)
4.6 Conclusions
183(1)
References
184(3)
II Modeling and Control 187(144)
Chapter 5 Stabilization of Nonholonomic Systems
191(38)
Alessandro Astolfi
5.1 Introduction
192(1)
5.2 Preliminaries and Definitions
193(4)
5.3 Discontinuous Stabilization
197(11)
5.3.1 Stabilization of Discontinuous Nonholonomic Systems
198(5)
5.3.2 The a Process
203(1)
5.3.3 The Issue of Asymptotic Stability
204(3)
5.3.4 An Algorithm to Design Almost Stabilizers
207(1)
5.4 Chained Systems and Power Systems
208(1)
5.5 Discontinuous Control of Chained Systems
209(4)
5.5.1 An Example: A Car-Like Vehicle
210(3)
5.5.2 Discussion
213(1)
5.6 Robust Stabilization — Part I
213(3)
5.7 Robust Stabilization — Part II
216(3)
5.7.1 The Local Controller
216(1)
5.7.2 The Global Controller
217(1)
5.7.3 Definition of the Hybrid Controller and Main Result
218(1)
5.7.4 Discussion
218(1)
5.8 Robust Stabilitazion — Part III
219(2)
5.8.1 Robust Sampled-Data Control of Power Systems
219(1)
5.8.2 An Example: A Car-Like Vehicle Revisited
220(1)
5.8.3 Discussion
221(1)
5.9 Conclusions
221(2)
Acknowledgments
223(1)
References
223(3)
Biography
226(3)
Chapter 6 Adaptive Neural-Fuzzy Control of Nonholonomic Mobile Robots
229(38)
Fan Hong, Shuzhi Sam Ge, Frank L. Lewis, and Tong Heng Lee
6.1 Introduction
229(3)
6.2 Dynamics of Nonholonomic Mobile Robots
232(5)
6.3 Multi-Layer NF Systems
237(5)
6.4 Adaptive NF Control Design
242(14)
6.5 Simulation Studies
256(5)
6.6 Conclusion
261(1)
References
262(2)
Biographies
264(3)
Chapter 7 Adaptive Control of Mobile Robots Including Actuator Dynamics
267(28)
Zhuping Wang, Chun-Yi Su, and Shuzhi Sam Ge
7.1 Introduction
267(2)
7.2 Dynamic Modeling and Properties
269(8)
7.3 Control System Design
277(8)
7.3.1 Kinematic and Dynamic Subsystems
277(2)
7.3.2 Control Design at the Actuator Level
279(6)
7.4 Simulation
285(4)
7.5 Conclusion
289(1)
References
290(2)
Biographies
292(3)
Chapter 8 Unified Control Design for Autonomous Car-Like Vehicle Tracking Maneuvers
295(36)
Danwei Wang and Minhtuan Pham
8.1 Introduction
295(2)
8.2 Dynamics of Tracking Maneuvers
297(2)
8.2.1 Vehicle Kinematics and Dynamics
297(1)
8.2.2 Dynamics of Tracking Maneuvers
298(1)
8.3 A Unified Tracking Controller
299(15)
8.3.1 Kinematics-Based Tracking Controller
308(2)
8.3.2 Dynamics-Based Tracking Controller
310(3)
8.3.3 Requirement of Measurements
313(1)
8.4 Tracking Performance Evaluation
314(10)
8.4.1 Forward Tracking Control
315(1)
8.4.1.1 Influence of parameter p
315(1)
8.4.1.2 Influence of parameter l
318(2)
8.4.2 Backward Tracking Control
320(1)
8.4.2.1 Influence of parameter p
321(1)
8.4.2.2 Influence of parameter l
324(1)
8.5 Conclusions
324(3)
References
327(1)
Bibliographies
328(3)
III Map Building and Path Planning 331(130)
Chapter 9 Map Building and SLAM Algorithms
335(38)
José A. Castellanos, José Neira, and Juan D. Tardós
9.1 Introduction
335(4)
9.2 SLAM Using the Extended Kalman Filter
339(7)
9.2.1 Initialization
340(1)
9.2.2 Vehicle Motion: The EKF Prediction Step
341(1)
9.2.3 Data Association
342(2)
9.2.4 Map Update: The EKF Estimation Step
344(1)
9.2.5 Adding Newly Observed Features
344(1)
9.2.6 Consistency of EKF–SLAM
345(1)
9.3 Data Association in SLAM
346(12)
9.3.1 Individual Compatibility Nearest Neighbor
346(1)
9.3.2 Joint Compatibility
347(3)
9.3.3 Relocation
350(4)
9.3.4 Locality
354(4)
9.4 Mapping Large Environments
358(8)
9.4.1 Building Independent Local Maps
359(1)
9.4.2 Local Map Joining
359(2)
9.4.3 Matching and Fusion after Map Joining
361(1)
9.4.4 Closing a Large Loop
361(4)
9.4.5 Multi-robot SLAM
365(1)
9.5 Conclusions
366(1)
Appendix: Transformations in 2D
367(1)
Acknowledgment
368(1)
References
368(3)
Bibliography
371(2)
Chapter 10 Motion Planning: Recent Developments
373(44)
Hector H. González-Baños, David Hsu, and Jean-Claude Latombe
10.1 Introduction
374(1)
10.2 Path Planning
375(11)
10.2.1 Configuration Space
376(1)
10.2.2 Early Approaches
377(1)
10.2.2.1 Roadmap
378(1)
10.2.2.2 Cell decomposition
379(1)
10.2.2.3 Potential field
380(1)
10.2.3 Random Sampling
381(1)
10.2.3.1 Multi-query planning
382(1)
10.2.3.2 Single-query planning
383(1)
10.2.3.3 Probabilistic completeness
385(1)
10.2.3.4 Advantages of random sampling
386(1)
10.3 Motion Planning under Kinematic and Dynamic Constraints
386(7)
10.3.1 Kinematic and Dynamic Constraints
386(3)
10.3.2 General Approaches
389(1)
10.3.3 Random Sampling
390(1)
10.3.4 Case Studies on Real Robotic Systems
390(1)
10.3.4.1 Motion planning of trailer-trucks for transporting Airbus A380 components
391(1)
10.3.4.2 A space robotics test-bed
392(1)
10.4 Motion Planning under Visibility Constraints
393(16)
10.4.1 Sensor Placement
394(1)
10.4.1.1 Sampling
395(1)
10.4.1.2 Near-optimal set covers
397(1)
10.4.1.3 Extensions
397(1)
10.4.2 Indoor Exploration
398(1)
10.4.2.1 Constraints on the NBW
398(1)
10.4.2.2 Safe regions
399(1)
10.4.2.3 Image registration
400(1)
10.4.2.4 Evaluating next views
401(1)
10.4.2.5 Computing the NBV
401(1)
10.4.2.6 Extensions
402(1)
10.4.3 Target Tracking
403(1)
10.4.3.1 State transition equations
403(1)
10.4.3.2 Visibility constraints
404(1)
10.4.3.3 Tracking strategies
404(1)
10.4.3.4 Backchaining and dynamic programming
407(1)
10.4.3.5 Escape-time approximations
407(1)
10.4.3.6 Robot localization
408(1)
10.4.3.7 Other results and extensions
408(1)
10.5 Other Important Issues
409(1)
10.6 Conclusion
410(1)
References
411(5)
Biographies
416(1)
Chapter 11 Multi-Robot Cooperation
417(44)
Rafael Fierro, Luiz Chaimowicz, and Vijay Kumar
11.1 Introduction
418(1)
11.2 Cooperative Multi-Robot Systems
419(4)
11.2.1 Motion Planning and Control
421(1)
11.2.1.1 Explicit approaches
421(1)
11.2.1.2 Implicit approaches
422(1)
11.2.2 Graph Theory Preliminaries
422(1)
11.3 Formation Control
423(9)
11.3.1 Full-State Linearization via Dynamic Feedback
425(3)
11.3.2 Formation Reconfiguration
428(4)
11.4 Optimization-Based Cooperative Control
432(8)
11.4.1 Control of a Chain of Robots
437(3)
11.5 Applications
440(13)
11.5.1 Cooperative Manipulation
440(1)
11.5.1.1 Dynamic role assignment
440(1)
11.5.1.2 Modeling
442(4)
11.5.2 Multi-Robot Perimeter Detection and Tracking
446(1)
11.5.2.1 Cooperative hybrid controller
449(1)
11.5.2.2 Random coverage controller
449(1)
11.5.2.3 Potential field controller
452(1)
11.5.2.4 Tracking controller
453(1)
11.6 Conclusions
453(2)
Acknowledgments
455(1)
References
455(3)
Biographies
458(3)
IV Decision Making and Autonomy 461(110)
Chapter 12 Knowledge Representation and Decision Making for Mobile Robots
465(36)
Elena Messina and Stephen Balakirsky
12.1 Introduction
466(1)
12.2 Introduction and a Brief Survey of Representation Approaches
466(11)
12.2.1 Grounding Representation
466(1)
12.2.2 Representation Approaches
467(1)
12.2.2.1 Spatial representations
467(1)
12.2.2.2 Topological representations
472(1)
12.2.2.3 Symbolic representations
472(1)
12.2.2.4 No representation
474(1)
12.2.3 Multi-Representational Systems
474(1)
12.2.4 Decision Making
475(2)
12.3 Case Study: Knowledge Representation and Decision Making within a 4D/RCS
477(12)
12.3.1 Procedural vs. Declarative Knowledge in 4D/RCS
480(1)
12.3.1.1 Procedural knowledge
480(1)
12.3.1.2 Declarative knowledge
483(2)
12.3.2 Additional Considerations
485(1)
12.3.2.1 Integration considerations
485(1)
12.3.2.2 Integration within a single representation
486(1)
12.3.2.3 Integration among disparate representations
486(1)
12.3.2.4 Integration of decision systems
488(1)
12.3.2.5 Implications for system maintainability
488(1)
12.3.2.6 Implications for perception design
489(1)
12.4 An Implementation Example
489(4)
12.5 Conclusion
493(1)
References
494(4)
Biographies
498(3)
Chapter 13 Algorithms for Planning under Uncertainty in Prediction and Sensing
501(48)
Jason M. O'Kane, Benjamin Tovar, Peng Cheng, and Steven M. LaValle
13.1 Introduction and Preliminaries
502(2)
13.2 Planning under Prediction Uncertainty
504(21)
13.2.1 Making a Single Decision
505(1)
13.2.1.1 Including an observation
506(1)
13.2.1.2 Criticisms of decision theory
507(1)
13.2.2 Making a Sequence of Decisions
508(3)
13.2.3 Methods for Finding Optimal Solutions
511(1)
13.2.3.1 Value iteration
511(1)
13.2.3.2 Policy iteration
514(1)
13.2.3.3 Other methods
515(1)
13.2.4 Methods for Finding Approximate Solutions
516(1)
13.2.4.1 Certainty equivalent control
516(1)
13.2.4.2 Limited lookahead
516(1)
13.2.5 Conquering Continuous Spaces
517(3)
13.2.6 Variations
520(1)
13.2.6.1 Infinite horizon models
520(1)
13.2.6.2 Reinforcement learning
521(1)
13.2.6.3 Additional decision makers
523(2)
13.3 Planning under Sensing Uncertainty
525(16)
13.3.1 Discrete State Spaces
526(1)
13.3.1.1 Sensors
526(1)
13.3.1.2 Definition of the information space
527(1)
13.3.2 Deriving Information States
528(5)
13.3.3 Continuous State Spaces
533(1)
13.3.3.1 Sensors
533(1)
13.3.3.2 Discrete-stage information spaces
533(1)
13.3.3.3 Continuous-time information spaces
534(1)
13.3.4 Examples of Planning in the Information Space
535(1)
13.3.4.1 Moving in an L-shaped corridor
535(1)
13.3.4.2 The Kalman filter
537(1)
13.3.4.3 Sensorless manipulation
539(2)
13.4 Conclusion and Bibliographical Remarks
541(1)
References
541(5)
Biographies
546(3)
Chapter 14 Behavior-Based Coordination in Multi-Robot Systems
549(22)
Chris Jones and Maja J. Mataric
14.1 Overview of Robot Control Architectures
550(3)
14.1.1 Single Robot Control
550(2)
14.1.2 Behavior-Based Control
552(1)
14.2 From Single Robot Control to Multi-Robot Control
553(2)
14.2.1 Advantages and Challenges of Multi-Robot Systems
554(1)
14.2.2 Necessity of Coordination in MRS
554(1)
14.3 From Local Interactions to Global Coordination
555(6)
14.3.1 Interaction through the Environment
555(1)
14.3.2 Interaction through the Environment Case Study: Object Clustering
556(1)
14.3.3 Interaction through Sensing
557(1)
14.3.4 Interaction through Sensing Case Study: Formation Marching
558(1)
14.3.5 Interaction through Communication
559(1)
14.3.6 Interaction through Communication Case Study: Multiple Target Tracking
560(1)
14.4 Formal Design and Analysis of MRS
561(3)
14.4.1 Analysis of MRS Using Macroscopic Models
561(1)
14.4.2 Analysis of MRS Using Microscopic Models
562(1)
14.4.3 Principled Synthesis of MRS Controllers
562(2)
14.5 Conclusions and the Future of Multi-Robot Systems
564(1)
References
564(4)
Biographies
568(3)
V System Integration and Applications 571(126)
Chapter 15 Integration for Complex Consumer Robotic Systems: Case Studies and Analysis
573(40)
Mario E. Munich, James P. Ostrowski, and Paolo Pirjanian
15.1 Introduction
574(1)
15.2 Background
575(2)
15.3 Related Work
577(1)
15.4 System Integration as a Multi-Objective Optimization Problem
578(2)
15.4.1 Complexity
578(1)
15.4.2 Performance
579(1)
15.4.3 Price
579(1)
15.5 Tradeoffs and Challenges in Integration of a Complex Autonomous System
580(4)
15.5.1 Component Simplicity vs. System Complexity
580(1)
15.5.1.1 Hardware vs. software
580(1)
15.5.1.2 Generalization vs. specialization
581(1)
15.5.1.3 Abstraction and aggregation
582(1)
15.5.2 Testing, Testing, Testing...
583(1)
15.6 Integration through Architecture
584(3)
15.7 A Software Architecture for Consumer Robotic Systems
587(8)
15.7.1 ERSP in the Role of the System Integration Architecture?
589(5)
15.7.2 Development Tools
594(1)
15.8 Case Study 1: Sony AIBO
595(3)
15.9 Case Study 2: Autonomous Capabilities for Vacuum Cleaning
598(11)
15.9.1 Lessons Learned
606(1)
15.9.2 Embedded Implementation of vSLAM
607(2)
15.10 Conclusions
609(1)
References
609(1)
Biographies
610(3)
Chapter 16 Automotive Systems/Robotic Vehicles
613(42)
Michel R. Parent and Stéphane R. Petti
16.1 Introduction
614(8)
16.1.1 A Key Product of the 20th Century
614(1)
16.1.2 Problems with Safety
615(1)
16.1.3 Problems of Congestion
616(1)
16.1.4 Problems with Emissions and Nuisances
617(2)
16.1.5 Car-Sharing and Cybercars
619(1)
16.1.6 The Future of the Automobile
620(2)
16.2 The Automotive Sensors
622(15)
16.2.1 Ultrasound Sensors
622(1)
16.2.2 Inertial Sensors
623(1)
16.2.2.1 Gyroscopes — gyrometers
623(1)
16.2.2.2 Accelerometers
624(1)
16.2.3 Laser Detection and Ranging
624(1)
16.2.3.1 Range measurement
625(1)
16.2.3.2 Azimuth measurement
625(2)
16.2.4 Radar
627(1)
16.2.4.1 Range measurement
627(1)
16.2.4.2 Azimuth measurement
628(1)
16.2.4.3 Automotive radars
629(1)
16.2.5 Vision Sensor
629(1)
16.2.5.1 Principles
629(1)
16.2.5.2 Specificities of automotive applications
629(1)
16.2.5.3 Stereovision systems
630(1)
16.2.5.4 Future vision processors
631(1)
16.2.6 Global Navigation Satellite-Based System
632(1)
16.2.6.1 Global positioning system
632(1)
16.2.6.2 GLONASS
633(1)
16.2.6.3 GALILEO
633(1)
16.2.6.4 GPS receiver-based localization
633(1)
16.2.6.5 Basic principle
634(1)
16.2.6.6 Code range positioning
634(1)
16.2.6.7 Code phase differential GPS
635(1)
16.2.6.8 Augmented differential GPS
635(1)
16.2.6.9 Internet-based differential GPS
636(1)
16.2.6.10 Carrier phase differential GPS
636(1)
16.2.6.11 Sensor fusion for improved localization
637(1)
16.3 Automotive Actuators
637(5)
16.3.1 Power Train Actuators
638(1)
16.3.2 Brake Actuators
639(1)
16.3.3 Steering Actuators
640(2)
16.4 Vehicle Control
642(9)
16.4.1 Longitudinal Control
643(1)
16.4.1.1 Adaptive cruise control
643(1)
16.4.1.2 Precrash system/automatic emergency braking
644(1)
16.4.1.3 Stop and go
646(1)
16.4.2 Lateral Control
646(1)
16.4.3 Full Vehicle Control
647(4)
References
651(3)
Biographies
654(1)
Chapter 17 Intelligent Systems
655(42)
Sesh Commuri, James S. Albus, and Anthony Barbera
17.1 Architectural Requirements for Intelligent UGVs
656(1)
17.2 Background on Intelligent Systems
657(1)
17.3 4D/RCS Architecture and Methodology
658(18)
17.3.1 4D/RCS Architecture
658(5)
17.3.2 4D/RCS Methodology
663(2)
17.3.3 Representing Knowledge in 4D/RCS
665(1)
17.3.3.1 Procedural knowledge
668(1)
17.3.3.2 Declarative knowledge
671(5)
17.4 Experimental Results
676(14)
17.4.1 Implementation of Reconfigurable UGV Teams at the OU
677(1)
17.4.1.1 AL² architecture
677(1)
17.4.1.2 Hardware and software design methodology
680(1)
17.4.1.3 Design and implementation of UGV teams
681(5)
17.4.2 Demo III Experimental Unmanned Vehicle (XUV) Project at NIST
686(4)
17.5 Current Research and Future Directions
690(1)
17.6 Conclusions
691(1)
Acknowledgments
692(1)
References
692(4)
Biographies
696(1)
Index 697

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program