rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780071447881

Biofluid Mechanics in Cardiovascular Systems

by
  • ISBN13:

    9780071447881

  • ISBN10:

    0071447881

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2005-12-06
  • Publisher: McGraw-Hill Education
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $184.00
  • Digital
    $207.00*
    Add to Cart

    DURATION
    PRICE
    *To support the delivery of the digital material to you, a digital delivery fee of $3.99 will be charged on each digital item.

Summary

Cardiovascular products represent the largest dollar portion of the healthcare industry. Development of these devices requires dramatic innovation.This book combines engineering principles with cardiopulmonary anatomy and physiology to show biomedical engineers how to design and implement arterial grafts, anastomosis devices, and Heart valves.Unlike other books on the subject, this one looks at the subject from an engineering perspective rather than aclinical one in order to appeal to the biomedical engineering audience

Author Biography

Lee Waite is Chair of the Department of Applied Biology and Biomedical Engineering, and Director of the Guidant/Eli Lilly and Co. Applied Life Sciences Research Center, at the Rose-Hulman Institute of Technology in Terre Haute, Indiana. He is also the president of the Rocky Mountain Bioengineering Symposium (RMBS). Held annually since 1964, the RMBS is the longest continually operating biomedical engineering conference in North America.

Table of Contents

Preface xi
Acknowledgments xiii
Chapter 1. Review of Basic Fluid Mechanics Concepts 1(24)
1.1 A Brief History of Biomedical Fluid Mechanics
1(3)
1.2 Fluid Characteristics and Viscosity
4(5)
1.2.1 Displacement
4(2)
1.2.2 Shear stress
6(3)
1.3 Fundamental Method for Measuring Viscosity
9(2)
1.4 Introduction to Pipe Flow
11(7)
1.4.1 Reynolds number
12(2)
1.4.2 Poiseuille's law
14(2)
1.4.3 Flow rate
16(2)
1.5 Bernoulli Equation
18(1)
1.6 Conservation of Mass
18(2)
1.6.1 Venturi meter example
19(1)
1.7 Example Problem: Fluid Statics
20(2)
1.7.1 Example problem: fluid statics
21(1)
1.8 The Wormersley Number, ot, a Frequency Parameter for Pulsatile Flow
22(3)
Chapter 2. Cardiovascular Structure and Function 25(20)
2.1 Introduction
25(1)
2.2 Clinical Features
26(1)
2.3 Functional Anatomy
27(1)
2.4 The Heart as a Pump
28(1)
2.5 Cardiac Muscle
29(4)
2.5.1 Biopotential in myocardium
30(1)
2.5.2 Excitability
31(2)
2.5.3 Automaticity
33(1)
2.6 Heart Valves
33(1)
2.6.1 Clinical features
34(1)
2.7 Cardiac Cycle
34(2)
2.8 Heart Sounds
36(2)
2.8.1 Clinical features
36(2)
2.9 Factors Influencing Flow and Pressure
38(2)
2.10 Coronary Circulation
40(1)
2.10.1 Control of the coronary circulation
41(1)
2.10.2 Clinical features
41(1)
2.11 Microcirculation
41(4)
2.11.1 Capillary structure
42(1)
2.11.2 Capillary wall structure
42(3)
Chapter 3. Pulmonary Anatomy, Pulmonary Physiology, and Respiration 45(26)
3.1 Introduction
45(1)
3.2 Clinical Features
46(1)
3.3 Alveolar Ventilation
47(2)
3.3.1 Tidal volume
47(1)
3.3.2 Residual volume
47(1)
3.3.3 Expiratory reserve volume
48(1)
3.3.4 Inspiratory reserve volume
48(1)
3.3.5 Functional residual capacity
48(1)
3.3.6 Inspiratory capacity
48(1)
3.3.7 Total lung capacity
48(1)
3.3.8 Vital capacity
49(1)
3.4 Ventilation—Perfusion Relationships
49(1)
3.5 Mechanics of Breathing
50(1)
3.5.1 Muscles of inspiration
50(1)
3.5.2 Muscles of expiration
51(1)
3.5.3 Compliance of the lung and chest wall
51(1)
3.6 Work of Breathing
51(3)
3.7 Airway Resistance
54(3)
3.8 Gas Exchange and Transport
57(4)
3.8.1 Diffusion
58(1)
3.8.2 Diffusing capacity
58(1)
3.8.3 Resistance to diffusion
59(1)
3.8.4 Oxygen dissociation curve
60(1)
3.9 Pulmonary Pathophysiology
61(2)
3.9.1 Bronchitis
61(1)
3.9.2 Emphysema
61(1)
3.9.3 Asthma
61(1)
3.9.4 Pulmonary fibrosis
61(1)
3.9.5 Chronic obstructive pulmonary disease
62(1)
3.9.6 Heart disease
63(1)
3.9.7 Comparison of pulmonary pathologies
63(1)
3.10 Respiration in Extreme Environments
63(8)
3.10.1 Barometric pressure
63(2)
3.10.2 Partial pressure of oxygen
65(1)
3.10.3 Hyperventilation
66(1)
3.10.4 Alkalosis
67(1)
3.10.5 Acute mountain sickness (AMS)
67(1)
3.10.6 High-altitude pulmonary edema
67(1)
3.10.7 High-altitude cerebral edema
68(1)
3.10.8 Acclimatization
68(1)
3.10.9 Drugs stimulating red blood cell production
69(2)
Chapter 4. Hematology and Blood Rheology 71(18)
4.1 Introduction
71(1)
4.2 Elements of Blood
71(1)
4.3 Blood Characteristics
71(1)
4.4 Erythrocytes
72(5)
4.4.1 Hemoglobin
74(1)
4.4.2 Clinical Features
75(1)
4.4.3 Erythrocyte indices
76(1)
4.4.4 Abnormalities of the blood
77(1)
4.5 Leukocytes
77(4)
4.5.1 Neutrophils
78(1)
4.5.2 Lymphocytes
79(1)
4.5.3 Monocytes
80(1)
4.5.4 Eosinophils
80(1)
4.5.5 Basophils
81(1)
4.5.6 Leukemia
81(1)
4.5.7 Thrombocytes
81(1)
4.6 Blood Types
81(3)
4.6.1 Rh blood groups
83(1)
4.6.2 M and N blood group system
84(1)
4.7 Plasma
84(2)
4.7.1 Plasma viscosity
85(1)
4.7.2 Electrolyte composition of plasma
85(1)
4.8 Blood pH
86(1)
4.9 Clinical Features
86(3)
Chapter 5. Anatomy and Physiology of Blood Vessels 89(16)
5.1 Introduction
89(1)
5.2 General Structure of Arteries
89(2)
5.2.1 Tunica intima
90(1)
5.2.2 Tunica media
90(1)
5.2.3 Tunica externa
91(1)
5.3 Types of Arteries
91(1)
5.3.1 Elastic arteries
92(1)
5.3.2 Muscular arteries
92(1)
5.3.3 Arterioles
92(1)
5.4 Mechanics of Arterial Walls
92(2)
5.5 Compliance
94(5)
5.6 Pressure-Strain Modulus
99(1)
5.7 Vascular Pathologies
100(2)
5.7.1 Atherosclerosis
100(1)
5.7.2 Stenosis
100(1)
5.7.3 Aneurysm
100(1)
5.7.4 Thrombosis
101(1)
5.7.5 Clinical aspects
101(1)
5.8 Stents
102(1)
5.9 Coronary Artery Bypass Grafting
102(3)
5.9.1 Arterial grafts
103(2)
Chapter 6. Mechanics of Heart Valves 105(12)
6.1 Introduction
105(1)
6.2 Aortic and Pulmonic Valves
106(3)
6.3 Mitral and Tricuspid Valves
109(2)
6.4 Clinical Features
111(1)
6.5 Prosthetic Mechanical Valves
111(3)
6.5.1 Case study–the Björk-Shiley convexo-concave heart valve
112(2)
6.6 Prosthetic Tissue Valves
114(3)
Chapter 7. Pulsatile Flow in Large Arteries 117(20)
7.1 Fluid Kinematics
117(1)
7.2 Continuity
118(1)
7.3 Complex Numbers
119(2)
7.4 Fourier Series Representation
121(2)
7.5 Navier-Stokes Equations
123(3)
7.6 Pulsatile Flow in Rigid Tubes: Wormersley Solution
126(5)
7.7 Pulsatile Flow in Rigid Tubes: Fry Solution
131(4)
7.8 Instability in Pulsatile Flow
135(2)
Chapter 8. Flow and Pressure Measurement 137(26)
8.1 Introduction
137(1)
8.2 Indirect Pressure Measurements
137(1)
8.3 Direct Pressure Measurement
138(17)
8.3.1 Intravascular: strain gauge–tipped pressure transducer
138(6)
8.3.2 Extravascular: catheter-transducer measuring system
144(1)
8.3.3 Electrical analog of the catheter measuring system
145(2)
8.3.4 Characteristics for an extravascular pressure measuring system
147(2)
8.3.5 Case 1—the undamped catheter measurement system
149(1)
8.3.6 Case 2—the undriven, damped catheter measurement system
150(4)
8.3.7 Pop test—measurement of transient step response
154(1)
8.4 Flow Measurement
155(5)
8.4.1 Indicator dilution method
155(1)
8.4.2 Fick technique for measuring cardiac output
156(1)
8.4.3 Fick technique example
156(1)
8.4.4 Rapid injection indicator-dilution method—dye dilution technique
156(1)
8.4.5 Thermodilution
157(1)
8.4.6 Electromagnetic flowmeters
158(1)
8.4.7 Continuous wave ultrasonic flowmeters
159(1)
8.4.8 Continuous wave Doppler ultrasound example
160(1)
8.5 Summary and Clinical Applications
160(3)
Chapter 9. Modeling 163(14)
9.1 Introduction
163(1)
9.2 Theory of Models
164(4)
9.2.1 Dimensional analysis and the Buckingham Pi theorem
164(2)
9.2.2 Synthesizing Pi terms
166(2)
9.3 Geometric Similarity
168(1)
9.4 Dynamic Similarity
169(1)
9.5 Kinematic Similarity
169(1)
9.6 Common Dimensionless Parameters in Fluid Mechanics
170(1)
9.7 Modeling Example 1—Does the Flea Model the Man?
170(3)
9.8 Modeling Example 2
173(1)
9.9 Modeling Example 3
173(4)
Chapter 10. Lumped Parameter Mathematical Models 177(16)
10.1 Introduction
177(1)
10.2 Electrical Analog Model of Flow in a Tube
178(4)
10.2.1 Nodes and the equations at each node
179(1)
10.2.2 Terminal load
180(2)
10.2.3 Summary of the lumped parameter electrical analog model
182(1)
10.3 Modeling of Flow through the Mitral Valve
182(8)
10.3.1 Model description
184(2)
10.3.2 Active ventricular relaxation
186(1)
10.3.3 Meaning of convective resistance
186(1)
10.3.4 Variable area mitral valve model description
187(1)
10.3.5 Variable area mitral valve model parameters
188(1)
10.3.6 Solving the system of differential equations
188(1)
10.3.7 Model trials
188(1)
10.3.8 Results
189(1)
10.4 Summary
190(3)
Index 193

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program