rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9781118030141

Biomedical Materials and Diagnostic Devices

by ; ; ;
  • ISBN13:

    9781118030141

  • ISBN10:

    1118030141

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2012-10-09
  • Publisher: Wiley-Scrivener

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $290.07 Save up to $94.27
  • Rent Book $195.80
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-4 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

How To: Textbook Rental

Looking to rent a book? Rent Biomedical Materials and Diagnostic Devices [ISBN: 9781118030141] for the semester, quarter, and short term or search our site for other textbooks by Tiwari, Ashutosh; Ramalingam, Murugan; Kobayashi, Hisatoshi; Turner, Anthony P. F.. Renting a textbook can save you up to 90% from the cost of buying.

Summary

The functional materials with the most promising outlook have the ability to precisely adjust the biological phenomenon in a controlled mode. Engineering of advanced bio- materials has found striking applications in used for biomedical and diagnostic device applications, such as cell separation, stem-cell, drug delivery, hyperthermia, automated DNA extraction, gene targeting, resonance imaging, biosensors, tissue engineering and organ regeneration. The book comprises 15 chapters in four parts: Biomedical Materials; Diagnostic Devices; Drug Delivery and Therapeutics; and Tissue Engineering and Organ Regenartion.

Author Biography

Ashutosh Tiwari is an assistant professor of nanobioelectronics at Biosensors and Bioelectronics Centre, IFM-Linköping University, Sweden, as well as Editor-in-Chief of Advanced Materials Letters. He has published more than 125 articles and patents as well as authored/edited books in the field of materials science and technology.

Murugan Ramalingam is an associate professor of biomaterials and tissue engineering at the Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg (UdS), France. Concurrently, he holds an adjunct associate professorship at Tohoku University, Japan. He has authored more than 125 publications and is Editor-in-Chief of Journal of Bionanoscience and Journal of Biomaterials and Tissue Engineering.

Hisatoshi Kobayashi is group leader of Biofunctional Materials at Biomaterials Centre, National Institute for Materials Science, Japan. He has published more than 150 publications, books and patents in the field of biomaterials science and technology, as well as edited/authored three books on the advanced state-of-the-art of biomaterials.

Professor Anthony P. F. Turner is currently Head of Division, FM-Linköping University's new Centre for Biosensors and Bioelectronics. His previous thirty-five-year academic career in the United Kingdom culminated in the positions of Principal (Rector) of Cranfield University and Distinguished Professor of Biotechnology. Professor Turner has more than 600 publications and patents in the field of biosensors and biomimetic sensors and is best known for his role in the development of glucose sensors for home-use by people with diabetes. He published the first textbook on Biosensors in 1987 and is Editor-In-Chief of the principal journal in his field, Biosensors & Bioelectronics, which he cofounded in 1985.

Table of Contents

Preface        xv

Part I: Biomedical Materials

1. Application of the Collagen as Biomaterials        3
Kwangwoo Nam and Akio Kishida

1.1     Introduction         3

1.2     Structural Aspect of Native Tissue   5

1.2.1  Microenvironment         5

1.2.2  Decellularization  6

1.2.3  Strategy for Designing Collagen-based Biomaterials     7

1.3     Processing of Collagen Matrix 8

1.3.1  Fibrillogenesis      8

1.3.2  Orientation 10

1.3.3  Complex Formation and Blending    11

1.3.4  Layered Structure 13

1.4     Conclusions and Future Perspectives         14

References  15

2. Biological and Medical Significance of Nanodimensional and Nanocrystalline Calcium Orthophosphates 19
Sergey V. Dorozhkin

2.1     Introduction         19

2.2     General Information on ?Nano?       21

2.3     Micron- and Submicron-Sized Calcium Orthophosphates versus the Nanodimensional Ones  23

2.4     Nanodimensional and Nanocrystalline Calcium Orthophosphates in Calcified Tissues of Mammals    26

2.4.1  Bones         26

2.4.2  Teeth 27

2.5     The Structure of the Nanodimensional and Nanocrystalline Apatites        28

2.6     Synthesis of the Nanodimensional and Nanocrystalline Calcium Orthophosphates     34

2.6.1  General Nanotechnological Approaches     34

2.6.2  Nanodimensional and Nanocrystalline Apatites  34

2.6.3  Nanodimensional and Nanocrystalline TCP        43

2.6.4  Other Nanodimensional and Nanocrystalline Calcium Orthophosphates  44

2.6.5  Biomimetic Construction Using Nanodimensional Particles   46

2.7     Biomedical Applications of the Nanodimensional and Nanocrystalline Calcium Orthophosphates 47

2.7.1  Bone Repair         47

2.7.2  Nanodimensional and Nanocrystalline Calcium Orthophosphates and Bone-related Cells          51

2.7.3  Dental Applications       53

2.7.4  Other Applications        54

2.8     Other Applications of the Nanodimensional and Nanocrystalline Calcium Orthophosphates 58

2.9     Summary and Perspectives     58

2.10  Conclusions 61

Closing Remarks  62

References and Notes     62

3. Layer-by-Layer (LbL) Thin Film: From Conventional To Advanced Biomedical and Bioanalytical Applications      101
Wing Cheung MAK

3.1     State-of-the-art LbL Technology       101

3.2     Principle of Biomaterials Based Lbl Architecture 102

3.3     LbL Thin Film for Biomaterials and Biomedical Implantations        103

3.4     LbL Thin Film for Biosensors and Bioassays      105

3.5     LbL Thin Film Architecture on Colloidal Materials       107

3.6     LbL Thin Film for Drug Encapsulation and Delivery    108

3.7     LbL Thin Film Based Micro/Nanoreactor   110

References  111

4. Polycaprolactone based Nanobiomaterials 115
Narendra K. Singh and Pralay Maiti

4.1     Introduction         115

4.2     Preparation of Polycaprolactone Nanocomposites        118

4.2.1  Solution Casting Method        118

4.2.2  Melt Extrusion Technique       118

4.2.3  In Situ Polymerization   119

4.3     Characterization of Poly(caprolactone) Nanocomposites        119

4.3.1  Nanostructure      120

4.3.2  Microstructure     121

4.4     Properties   123

4.4.1  Mechanical Properties   123

4.4.2  Thermal Properties Contents vii 126

4.4.3  Biodegradation  130

4.5     Biocompatibility and Drug Delivery Application  141

4.6     Conclusion  150 Acknowledgement  150

References  150

5. Bone Substitute Materials in Trauma and Orthopedic Surgery ? Properties and Use in Clinic 157
Esther M.M. Van Lieshout

5.1     Introduction         158

5.2     Types of Bone Grafts    159

5.2.1  Autologous Transplantation   159

5.2.2  Allotransplantation and Xenotransplantation     159

5.2.3  Alternative Bone Substitute Materials for Grafting       160

5.3     Bone Substitute Materials       161

5.3.1  General Considerations 161

5.3.2  Calcium Phosphates      161

5.3.3  Calcium Sulphates         166

5.3.4  Bioactive Glass    168

5.3.5  Miscellaneous Products 169

5.3.6  Future Directions 170

5.4     Combinations with Osteogenic and Osteoinductive Materials 171

5.4.1  Osteogenic Substances   172

5.4.2  Osteoinductive Substances      173

5.5     Discussion and Conclusion     173

References  174

6. Surface Functionalized Hydrogel Nanoparticles  191
Mehrdad Hamidi, Hajar Ashrafi and Amir Azadi

6.1     Hydrogel Nanoparticles 191

6.2     Hydrogel Nanoparticles Based on Chitosan        193

6.3     Hydrogel Nanoparticles Based on Alginate         194

6.4     Hydrogel Nanoparticles Based on Poly(vinyl Alcohol) 195

6.5     Hydrogel Nanoparticles Based on Poly(ethylene Oxide) and Poly(ethyleneimine)          196

6.6     Hydrogel Nanoparticles Based on Poly(vinyl Pyrrolidone)     198

6.7     Hydrogel Nanoparticles Based on Poly-N-Isopropylacrylamide      198

6.8     Smart Hydrogel Nanoparticles         199

6.9     Self-assembled Hydrogel Nanoparticles     200

6.10  Surface Functionalization        201

6.11  Surface Functionalized Hydrogel Nanoparticles   205

References  209

Part II: Diagnostic Devices

7. Utility and Potential Application of Nanomaterials in Medicine      215
Ravindra P. Singh, Jeong -Woo Choi, Ashutosh Tiwari and Avinash Chand Pandey

7.1     Introduction         215

7.2     Nanoparticle Coatings   218

7.3     Cyclic Peptides     220

7.4     Dendrimers 221

7.5     Fullerenes/Carbon  Nanotubes/Graphene   227

7.6     Functional Drug Carriers        229

7.7     MRI Scanning Nanoparticles  233

7.8     Nanoemulsions    235

7.9     Nanofibers  236

7.10  Nanoshells  239

7.11  Quantum Dots      240

7.12  Nanoimaging        248

7.13  Inorganic Nanoparticles 248

7.14  Conclusion  250

Acknowledgement         251

References  251

8. Gold Nanoparticle-based Electrochemical Biosensors for Medical Applications 261
Ülkü Anik

8.1     Introduction         261

8.2     Electrochemical Biosensors     262

8.2.1  Gold Nanoparticles        262

8.3     Conclusion 272

References  273

9. Impedimetric DNA Sensing Employing Nanomaterials 277
Manel del Valle and Alessandra Bonanni

9.1     Introduction         277

9.1.1  DNA Biosensors (Genosensors)       278

9.1.2  Electrochemical Genosensors  280

9.2     Electrochemical Impedance Spectroscopy for Genosensing    280

9.2.1  Theoretical Background 281

9.2.2  Impedimetric Genosensors      284

9.3     Nanostructured Carbon Used in Impedimetric Genosensors      286

9.3.1  Carbon Nanotubes and Nanostructured Diamond         286

9.3.2  Graphene-based Platforms      288

9.4     Nanostructured Gold Used in Impedimetric Genosensors       290

9.4.1  Gold Nanoelectrodes     291

9.4.2  Gold Nanoparticles Used as Labels  292

9.5     Quantum Dots for Impedimetric Genosensing     293

9.6     Impedimetric Genosensors for Point-of-Care Diagnosis         293

9.7     Conclusions (Past, Present and Future Perspectives)    294

Acknowledgements        296

References  296

10.  Bionanocomposite Matrices in Electrochemical Biosensors      301
Ashutosh Tiwari, Atul Tiwari

10.1   Introduction         301

10.2   Fabricationof SiO2-CHIT/CNTs  Bionanocomposites  303

10.3   Preparation of Bioelectrodes   304

10.4   Characterizations 305

10.5   Electrocatalytic Properties      307

10.6   Photometric Response   315

10.7   Conclusions         316

Acknowledgements        316

References  317

11.  Biosilica ? Nanocomposites - Nanobiomaterials for Biomedical Engineering and Sensing Applications        321
Nikos Chaniotakis, Raluca Buiculescu

11.1   Introduction         321

11.2   Silica Polymerization Process  323

11.3   Biocatalytic Formation of Silica       325

11.4   Biosilica Nanotechnology        327

11.5   Applications        328

11.5.1         Photonic Materials         328

11.5.2         Enzyme Stabilization     328

11.5.3         Biosensor Development 330

11.5.4         Surface Modification for Medical Applications   332

11.6   Conclusions         334

References  334

12.  Molecularly Imprinted Nanomaterial-based Highly Sensitive and Selective Medical Devices       337
Bhim Bali Prasad and Mahavir Prasad Tiwari

12.1   Introduction         337

12.2   Molecular Imprinted Polymer Technology 340

12.2.1         Introduction of Molecular Recognition       340

12.2.2         Molecular Imprinting Polymerization: Background       340

12.2.3         Contributions of Polyakov, Pauling and Dickey  341

12.2.4         Approaches Toward Synthesis of MIPs     342

12.2.5         Optimization of the Polymer Structure       345

12.3   Molecularly Imprinted Nanomaterials        360

12.4   Molecularly Imprinted Nanomaterial-based Sensing Devices  362

12.4.1         Electrochemical Sensors          362

12.4.2         Optical Sensors    371

12.4.3         Mass Sensitive Devices  374

12.5   Conclusion 379

References  379

13.  Immunosensors for Diagnosis of Cardiac Injury    391
Swapneel R. Deshpande, Aswathi Anto Antony, Ashutosh Tiwari, Emilia Wiechec, Ulf Dahlström, Anthony P.F. Turner

13.1   Immunosensor     391

13.2   Myocardial Infarction and Cardiac Biomarkers   392

13.2.1         Myocardial Infarction    392

13.2.2         Cardiac Biomarkers       393

13.2.3         Immunoglobulins/Antibodies 394

13.2.4         Immunoassay       397

13.2.5         Enzyme Immunoassay for the Quantitative Determination of Cardiac Troponin I(CTNI) Marker    398

13.3   Immunosensors for Troponin 399

13.3.1         Optical Immunosensors for Detection of Cardiac Troponin   399

13.3.2         Electrochemical Immunosensors       403

13.4   Conclusions         404

Acknowledgements        405

References  406

Part III: Drug Delivery and Therapeutics

14.  Ground-Breaking Changes in Mimetic and Novel Nanostructured Composites for Intelligent-, Adaptive- and In vivo-responsive Drug Delivery Therapies   411
Dipak K. Sarker

14. 1  Introduction         411

14.1.1         Diseases of Major Importance in Society   416

14.1.2         Types of Cancers and Diseases Requiring Specific Dosage Delivery         419

14.2   Obstacles to the Clinician        420

14.3   Hurdles for the Pharmaceuticist        428

14.4   Nanostructures     431

14.4.1         Key Current Know-how          434

14.5   Surface Coating    435

14.7 Formulation Conditions and Parameters 439

14.8 Delivery Systems 440 

14.8.1         State-of-the-Art Technological Innovation 442

14.9 Evaluation 443 

14.9.1         Future Scientific Direction 445

14.10 Conclusions 447 

References 448

15.  Progress of Nanobiomaterials for Theranostic Systems   451
Dipendra Gyawali, Michael Palmer, Richard T. Tran and Jian Yang

15.1   Introduction         451

15.1.1         Nanomaterials and Nanomedicine    451

15.1.2         Drug Delivery, Imaging, and Targeting      453

15.1.3         Theranostic Nanomedicine      454

15.2   Design Concerns for Theranostic Nanosystems   456

15.2.1         Sizeand Stability  456

15.2.2         Surface Area and Chemistry   457

15.2.3         Drug Loading and Release       457

15.2.4         Imaging       458

15.2.5         Targeting    458

15.3   Designing a Smart and Functional Theranostic System         459

15.3.1         Tailoring Size and Shape of the Particles   459

15.3.2         Degradation and Drug Release Kinetics     460

15.3.3         Surface Properties and Placement of Targeting Molecules      461

15.4   Materials for Theranostic System     462

15.4.1         Polymeric Systems        462

15.4.2         Diagnostic and Imaging Materials     465

15.5   Theranostic Systems and Applications      474

15.5.1         Polymeric Nanoparticle-based Theranostic System       474

15.5.2         QD-based Theranostic System          475

15.5.3         Colloidal Gold-particle-based Theranostic System        478

15.5.4         Iron-oxide-based Theranostic Systems       479

15.6   Future Outlook    481

References  482

16.  Intelligent Drug Delivery Systems for Cancer Therapy    493
Mousa Jafari, Bahram Zargar, M. Soltani, D. Nedra Karunaratne, Brian Ingalls, P. Chen

16.1   Introduction         493

16.2   Peptides for Nucleic Acid and Drug Delivery in Cancer Therapy     494

16.2.1         Self-assembling Peptides as Carriers for

16.2.2         Different Classes of Peptides Used in Gene Delivery     495

16.2.3         Protein-derived and Designed CPPs  497

16.2.4         Cell Targeting Peptides  498

16.2.5         Nuclear Localization Peptides 499

16.3   Lipid Carriers       499

16.3.1         Liposomes  499

16.3.2         Modified Liposomes      500

16.3.3         Targeted Lipid Carriers 501

16.3.4         Bolaamphiphiles  503

16.3.5         Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs)          504

16.3.6         MixedSystems      505

16.4   Polymeric Carriers         506

16.4.1         Polymeric Nanoparticles         508

16.4.2         Dendrimers 508

16.4.3         Polymer-Protein/Aptamer  Conjugates       509

16.4.4         Polymer-Drug Conjugates       510

16.4.5         NoncovalentDrug Conjugates 510

16.4.6         Cationic Polymers         511

16.4.7         Polymers for Triggered Drug Release         511

16.4.8         Polymerosomes    512

16.4.9         Other Applications        513

16.5   Bactria Mediated Cancer Therapy    514

16.5.1         The Tumor Microenvironment          514

16.5.2         Salmonella-mediated Cancer Therapy        515

16.5.3         Clostridium-mediated Cancer Therapy       517

16.6   Conclusion 519

References  519

Part IV: Tissue Engineering and Organ Regeneration    531

17.  The Evolution of Abdominal Wall Reconstruction and the Role of Nonobiotecnology in the Development of Intelligent Abdominal Wall Mesh  533
Cherif Boutros, Hany F. Sobhi and Nader Hanna

17.1   The Complex Structure of the Abdominal Wall   534

17.2   Need for Abdominal Wall Reconstruction  535

17.3   Failure of Primary Repair       535

17.4   Limitations of the Synthetic Meshes 536

17.5   Introduction of Biomaterials To Overcome Synthetic Mesh Limitations    537

17.6   Ideal Material for Abdominal Wall Reconstruction       538

17.7   Role of Bionanotechnology in Providing the

17.7   Future Directions 542

References  542

18.  Poly(Polyol Sebacate)-based Elastomeric Nanobiomaterials for Soft Tissue Engineering          545
Qizhi Chen

18.1   Introduction         545

18.2   Poly(polyol sebacate) Elastomers     547

18.2.1         Synthesis and Processing of Poly(polyol sebacate)       547

18.2.2         Biocompatibility of PPS          549

18.2.3         Biodegradation of PPS  554

18.2.4         Mechanical Properties of PPS 558

18.2.6         Poly(polyol sebacate)-based Copolymers   560

18.2.7         Summary of PPS  562

18.3   Elastomeric Nanocomposites  562

18.3.1         Introduction to Elastomeric Nanocomposites      562

18.3.2         Thermoplastic Rubber-based Nanocomposites    563

18.3.3         Crosslinked Elastomer-based Nanocomposites   565

18.4   Summary    569

References  571

19.  Electrospun Nanomatrix for Tissue Regeneration  577
Debasish Mondal and Ashutosh Tiwari

19.1   Introduction         577

19.2   Electrosun Nanomatrix  578

19.3   Polymeric Nanomatrices for Tissue Engineering  580

19.3.1         Natural Polymers 580

19.3.2         Synthetic Polymers        581

19.4   Biocompatibility of the Nanomatrix 581

19.5   Electrospun Nanomatrices for Tissue Engineering        583

19.5.1         Bone Tissue Engineering         584

19.5.2         Cartilage Tissue Engineering   585

19.5.3         Ligament Tissue Engineering   586

19.5.4         Skeletal Muscle Tissue Engineering  587

19.5.5         Skin Tissue Engineering 587

19.5.6         Vascular Tissue Engineering   589

19.5.7         Nerve Tissue Engineering        591

19.6   Status and Prognosis     592

References  593

20.  Conducting Polymer Composites for Tissue Engineering Scaffolds    597
Yashpal Sharma, Ashutosh Tiwari and Hisatoshi Kobayashi

20.1   Introduction         598

20.3   Synthesis of Conducting Polymers   599

20.4   Application of Conducting Polymer in Tissue Engineering     600

20.5   Polypyrrole 600

20.6   Poly(3,4-ethylene dioxythiophene)   602

20.7   Polyaniline  603

20.8   Carbon Nanotube 605

20.9   Future Prospects and Conclusions    607

Acknowledgements        608

References  608

21.  Cell Patterning Technologies for Tissue Engineering        611
Azadeh Seidi and Murugan Ramalingam

21.1   Introduction         611

21.2   Patterned Co-culture Techniques      612

21.2.1         Substrate Patterning with ECM Components      613

21.2.2         Microfluidic-based Patterning 614

21.2.3         Switchable Surface-based Patterning          615

21.2.4         Mechanical and Stencil-based Patterning    615

21.2.5         3D Patterned Co-cultures        617

21.3   Applications of Co-cultures in Tissue Engineering        618

21.4   Concluding Remarks     619

Acknowledgements        619

References  620

Index 000 

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program