did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780471967484

Chemical Beam Epitaxy and Related Techniques

by ; ;
  • ISBN13:

    9780471967484

  • ISBN10:

    0471967483

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 1997-12-08
  • Publisher: Wiley
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $514.07 Save up to $1.57
  • Buy New
    $512.50
    Add to Cart Free Shipping Icon Free Shipping

    PRINT ON DEMAND: 2-4 WEEKS. THIS ITEM CANNOT BE CANCELLED OR RETURNED.

Supplemental Materials

What is included with this book?

Summary

Chemical Beam Epitaxy (CBE), is a powerful growth technique which has come to prominence over the last ten years. Together with the longer established molecular beam epitaxy (MBE) and metal organic vapour phase epitaxy (MOVPE), CBE provides a capability for the epitaxial growth of semiconductor and other advanced materials with control at the atomic limit. This, the first book dedicated to CBE, and closely related techniques comprises chapters by leading research workers in the field and provides a detailed overview of the state-of-the-art in this area of semiconductor technology. Topics covered include equipment design and safety considerations, design of chemical precursors, surface chemistry and growth mechanisms, materials and devices from arsenide, phosphide, antimonide, silicon and II-VI compounds, doping, selected area epitaxy and etching. The volume provides an introduction for those new to the field and a detailed summary for experienced researchers.

Author Biography

John S Foord and G. J. Davies are the authors of Chemical Beam Epitaxy and Related Techniques, published by Wiley.

Table of Contents

List of Contributors xiii(2)
Preface xv
CHAPTER 1 Chemical Beam Epitaxy: An introduction
1(12)
G. J. Davies
J. S. Foord
W. T. Tsang
1.1 Introduction
1(3)
1.2 Growth Mechanisms
4(2)
1.3 Comparisons of Epitaxial Growth Processes
6(5)
References
11(2)
CHAPTER 2 Growth Apparatus Design and Safety Considerations
13(38)
F. Alexandre
J. L. Benchimol
2.1 Introduction
13(1)
2.2 System Configuration
14(7)
2.2.1 System Design Considerations
14(2)
2.2.2 Sample Loading Chamber
16(1)
2.2.3 Growth Chamber
17(3)
2.2.4 Gas Handling System
20(1)
2.3 Pumping System
21(5)
2.3.1 Static Pumps
23(2)
2.3.2 Dynamic Pumps
25(1)
2.4 Source Injectors
26(5)
2.4.1 Low-Temperature Injector
26(2)
2.4.2 High-Temperature Injector
28(3)
2.4.3 Evaporation Cell for Solid Sources
31(1)
2.5 Source Control and Switching
31(9)
2.5.1 Mass Flow Control with Carrier Gas
32(3)
2.5.2 Mass Flow Control without Carrier Gas
35(1)
2.5.3 Pressure Control
36(3)
2.5.4 Source Switching
39(1)
2.6 Safety Systems
40(5)
2.6.1 Hazards of Gas Sources
41(1)
2.6.2 Safety Considerations in Equipment Design
41(1)
2.6.3 Gas Detection
42(1)
2.6.4 Safety Interlocking
42(1)
2.6.5 Exhaust Treatment
43(1)
2.6.6 Safe Experimental Procedures
44(1)
2.7 Future System Developments
45(2)
2.7.1 Substrate Stage
45(1)
2.7.2 Common Low-Temperature Injector
46(1)
2.7.3 Multiwafer Scale-up
47(1)
2.8 Conclusions
47(1)
References
48(3)
CHAPTER 3 Precursors for Chemical Beam Epitaxy
51(22)
D. A. Bohling
3.1 Introduction
51(2)
3.2 Review of CBE Precursors
53(15)
3.2.1 Group III Sources for III-V Compound Semiconductors
53(7)
3.2.2 Group V Sources for III-V Compound Semiconductor CBE
60(6)
3.2.3 Dopant Sources for Compound Semiconductor CBE
66(1)
3.2.4 Chemical Precursors for Silicon and Silicon Dioxide CBE
67(1)
3.3 Conclusions
68(1)
Acknowledgements
69(1)
References
69(4)
CHAPTER 4 Reaction Mechanisms for III-V Semiconductor Growth by Chemical Beam Epitaxy: Physical Origins of the Growth Kinetics and Film Purities Observed
73(20)
J. S. Foord
4.1 Introduction
73(1)
4.2 An Approach to the Determination of CBE Growth Mechanisms
74(2)
4.2.1 The Chemical Nature and Fluxes of Species Impinging on to and Leaving the Growth Surface
75(1)
4.2.2 Structure, Composition and Adsorbates at the Growth Surface
75(1)
4.2.3 Dynamic Surface Chemistry
75(1)
4.3 The CBE Growth of GaAs from Triethylgallium
76(5)
4.3.1 The Occurrence of a Threshold Growth Temperature
78(1)
4.3.2 The Decrease in the Growth Rate at High Temperatures
79(1)
4.3.3 Spill-over Effects in Carbon Incorporation
80(1)
4.3.4 Variation in Growth Rate with III-V Ratio
81(1)
4.4 Variation of Growth Rate with Semiconductor Matrix
81(3)
4.5 Growth Kinetics Using Other Alkyl Precursors
84(4)
4.6 Impurity Incorporation Mechanisms
88(3)
4.7 Concluding Remarks
91(1)
References
91(2)
CHAPTER 5 Growth of GaAs-Based Devices by Chemical Beam Epitaxy
93(36)
C. R. Abernathy
5.1 Introduction
93(1)
5.2 Heterojunction Bipolar Transistors
94(23)
5.2.1 HBT Structures
95(1)
5.2.2 Growth of the Base
96(6)
5.2.3 The AlGaAs Emitter
102(3)
5.2.4 The InGaP Emitter
105(4)
5.2.5 The Collector and Subcollector
109(1)
5.2.6 Npn Device Results
110(1)
5.2.7 Selective Epitaxial Growth of Extrinsic Contacts
110(5)
5.2.8 Pnp HBTs
115(2)
5.3 Field Effect Transistors
117(4)
5.3.1 MESFETs
117(1)
5.3.2 HEMTs
117(4)
5.4 Optical Devices
121(2)
5.5 Conclusions
123(1)
References
123(6)
CHAPTER 6 CBE InP-Based Materials and Devices
129(34)
W. T. Tsang
T. H. Chiu
6.1 Introduction
129(1)
6.2 System Design Considerations
130(7)
6.2.1 Gas Injectors
132(1)
6.2.2 Cryopanel
132(2)
6.2.3 Pumping
134(1)
6.2.4 Flow Rate Control
135(2)
6.2.5 Growth Temperature Monitoring
137(1)
6.3 Growth Mechanism
137(5)
6.4 Progress in Material Growth
142(5)
6.4.1 Binary Compound
142(1)
6.4.2 Ternary and Quaternary Alloys
143(2)
6.4.3 Gaseous Doping in InP-Based Materials
145(2)
6.5 Progress in Devices
147(13)
6.5.1 InGaAs/InGaAsP MQW Lasers and Modulators
147(6)
6.5.2 Strained InAsP MQW Lasers and Modulators
153(2)
6.5.3 InP/InGaAsP/InGaAs Avalanche Photodiodes
155(1)
6.5.4 Monolithic Integrated Photoreceivers
156(2)
6.5.5 InGaAsP-based Electronic Devices
158(2)
References
160(3)
CHAPTER 7 MOMBE of Antimonides and Growth Model
163(36)
H. Asahi
7.1 Introduction
163(1)
7.2 MOMBE Growth System
164(1)
7.3 MOMBE of GaAs and GaSb and Growth Model
165(16)
7.3.1 Use of TEGa, As(4) and Sb(4) and Growth Model
165(7)
7.3.2 Use of TEGa, TESb, and TEAs
172(2)
7.3.3 Use of TEGa, TDMASb, and TDMAAs: Etching Effect
174(4)
7.3.4 Substrate Orientation Dependence
178(3)
7.4 AlSb and AlGaSb Growth
181(5)
7.4.1 Growth with TIBAL
181(2)
7.4.2 Growth with TMAAL
183(3)
7.5 III-III-V Alloy Growth
186(1)
7.5.1 InGaAs
186(1)
7.5.2 InGaSb
186(1)
7.6 III-V-V Alloy Growth
187(4)
7.6.1 InAsSb
187(3)
7.6.2 GaAsSb
190(1)
7.7 Selective Growth
191(3)
7.7.1 Growth on SiO(2) Masked Substrate
191(2)
7.7.2 Growth on Patterned Substrate
193(1)
7.8 Concluding Remarks
194(1)
References
195(4)
CHAPTER 8 Chemical Beam Epitaxy of Widegap II-VI Compound Semiconductors
199(32)
A. Yoshikawa
8.1 Introduction
199(1)
8.2 CBE of Widegap II-VI Compounds
200(14)
8.2.1 Growth of Zn- and Cd-Based Binary II-VI Compounds
201(8)
8.2.2 Growth of (Zn,Cd,Mg)(S,Se) Ternary and Quaternary II-VI Compounds and Novel Structures
209(5)
8.3 Growth Mechanism in CBE of ZnSe and CdSe
214(9)
8.3.1 An in situ Optical Probing Method Suitable for CBE of II-VI Compounds
214(5)
8.3.2 Surface Reaction Models in CBE of ZnSe and CdSe
219(4)
8.4 Impurity Doping and Device Applications
223(5)
8.4.1 p-Type Doping
223(2)
8.4.2 n-Type Doping
225(1)
8.4.3 Blue/green LDs and LEDs
226(2)
8.5 Summary
228(1)
References
229(2)
CHAPTER 9 Gas Source Molecular Beam Epitaxy of Silicon and Related Materials
231(48)
Y. Shiraki
9.1 Introduction
231(1)
9.2 Equipment for Silicon Gas Source MBE
232(2)
9.3 Growth Mechanisms
234(5)
9.4 Growth of SiGe Alloys
239(16)
9.4.1 Formation and Control of SiGe Alloys
239(3)
9.4.2 Surface Segregation
242(4)
9.4.3 Surfactant-Mediated Growth and Segregant-Assisted Growth (SAG)
246(5)
9.4.4 Critical Thickness
251(2)
9.4.5 Ge Composition Dependence
253(2)
9.5 Growth of SiC
255(2)
9.6 Doping
257(3)
9.7 Formation of Si/Ge Heterostructures
260(7)
9.7.1 Band Structures of Si/Ge Heterostructures
260(3)
9.7.2 Formation of Superlattices and Quantum Wires
263(4)
9.8 Selective Growth
267(3)
9.9 Device Applications of GSMBE
270(4)
Acknowledgements
274(1)
References
274(5)
CHAPTER 10 Gas Source Molecular Beam Epitaxy
279(20)
L. Goldstein
10.1 Introduction
279(1)
10.2 Safety Aspects of GSMBE
280(2)
10.2.1 Organometallic Low-Pressure Group V Sources
280(1)
10.2.2 Hydride Generator
281(1)
10.3 Growth of the Quaternary InGaAsP
282(6)
10.3.1 Influence of Group III Composition
282(1)
10.3.2 Influence of Growth Rate and Temperature
283(1)
10.3.3 Immiscibility Growth of GaInAsP on InP
284(4)
10.4 Growth of Strain Layer Quantum Wells in the InGaAsP System
288(6)
10.4.1 Interface Control of GaInAsP/InP QW
288(1)
10.4.2 Strained Layer Multiquantum Wells (InGaAsP)
289(1)
10.4.3 Compressive Strained Quantum Wells (InGaAsP)
290(2)
10.4.4 Tensile Strained Quantum Wells (InGaAsP)
292(1)
10.4.5 Strain Compensated Layers
292(2)
10.5 Multistep Epitaxy with GSMBE
294(3)
References
297(2)
CHAPTER 11 Dopants and Dopant Incorporation
299(32)
T. Whitaker
T. Martin
11.1 Introduction
299(1)
11.2 Solid Dopant Sources
300(1)
11.3 Gaseous Dopant Sources
301(1)
11.4 Carbon Doping in GaAs/AlGaAs
302(11)
11.4.1 Carbon Doping with TMGa
303(1)
11.4.2 Hydrogen Passivation
303(1)
11.4.3 Halomethane Sources
304(3)
11.4.4 Carbon Doping in the Presence of TDMAAs
307(6)
11.5 Mg, Zn, and Be as p-Type Dopants for GaAs/AlGaAs
313(1)
11.6 n-Type Dopants for GaAs/AlGaAs
313(4)
11.6.1 Silicon
313(1)
11.6.2 Tin
313(2)
11.6.3 Sulphur
315(2)
11.7 p-Type Doping of InGaAs/InP
317(2)
11.8 Carbon doping of InGaAs
319(4)
11.9 n-Type Doping of InGaAs/InP
323(1)
11.10 Semi-insulating InP by Fe Doping
324(1)
11.11 Antimonides
325(1)
11.12 Conclusions
326(1)
References
326(5)
CHAPTER 12 Selected Area Epitaxy
331(64)
H. Heinecke
G. J. Davies
12.1 Introduction
331(2)
12.2 Growth Techniques
333(11)
12.2.1 Molecular Beam Epitaxy
333(2)
12.2.2 Metal Organic Vapour Phase Epitaxy
335(8)
12.2.3 Chemical Beam Epitaxy/Metal Organic Molecular Beam Epitaxy
343(1)
12.3 Surface Reaction Mechanisms of Selected Area Epitaxy
344(11)
12.3.1 The Influence of the Group III Species in Selected Area Epitaxy
345(4)
12.3.2 The Influence of Group V Species in Selected Area Epitaxy
349(6)
12.4 The Surface Selective Growth Process in CBE/MOMBE
355(29)
12.4.1 Surface Orientation Dependence
355(5)
12.4.2 Planar Selective Area Epitaxy
360(15)
12.4.3 Embedded Selective Area Epitaxy
375(9)
12.5 Devices Fabricated Using SAE by CBE/MOMBE
384(7)
Acknowledgements
391(1)
References
391(4)
CHAPTER 13 Chemical Beam Etching
395(20)
W. T. Tsang
T. H. Chiu
13.1 Introduction
395(1)
13.2 In situ Etching Technologies
396(1)
13.3 Chemical Beam Etching of GaAs and InP
397(6)
13.3.1 Monolayer Control
397(2)
13.3.2 Surface Chemistry
399(3)
13.3.3 Etching Kinetics
402(1)
13.4 Surface Morphology
403(5)
13.4.1 Continuous Etching
403(2)
13.4.2 Pulsed Etching
405(3)
13.5 Etch Cleaning
408(2)
13.6 Patterned Etch and Regrowth
410(2)
13.7 Summary
412(1)
References
413(2)
CHAPTER 14 Laser-Assisted Epitaxy
415(22)
H. Sugiura
14.1 Introduction
415(5)
14.1.1 Background of Photoassisted Epitaxy
415(1)
14.1.2 Current Status of Photoassisted Epitaxy
416(1)
14.1.3 Apparatus for Laser-Assisted CBE
417(2)
14.1.4 Laser Irradiation Effects
419(1)
14.2 Experimental Results
420(4)
14.2.1 Binary Epilayers
420(1)
14.2.2 InGaAs
421(3)
14.3 InGaAsP
424(3)
14.3.1 InGaAsP MQW
424(3)
14.4 Optical Device Applications
427(7)
14.4.1 Two-Wavelength Laser Diode Array
428(2)
14.4.2 Multiple-wavelength Laser Diode Array
430(2)
14.4.3 Photodetector for Multiple Wavelengths
432(2)
14.5 Summary
434(1)
References
434(3)
Index 437

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program