did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9783527306817

Chemoinformatics A Textbook

by ;
  • ISBN13:

    9783527306817

  • ISBN10:

    3527306811

  • Edition: 1st
  • Format: Paperback
  • Copyright: 2003-11-07
  • Publisher: Wiley-VCH
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $139.73 Save up to $0.70
  • Buy New
    $139.03
    Add to Cart Free Shipping Icon Free Shipping

    PRINT ON DEMAND: 2-4 WEEKS. THIS ITEM CANNOT BE CANCELLED OR RETURNED.

Supplemental Materials

What is included with this book?

Summary

This first work to be devoted entirely to this increasingly important field, the "Textbook" provides both an in-depth and comprehensive overview of this exciting new area.Edited by Johann Gasteiger and Thomas Engel, the book provides an introduction to the representation of molecular structures and reactions, data types and databases/data sources, search methods, methods for data analysis as well as such applications as structure elucidation, reaction simulation, synthesis planning and drug design. A "hands-on" approach with step-by-step tutorials and detailed descriptions of software tools and Internet resources allows easy access for newcomers, advanced users and lecturers alike. For a more detailed presentation, users are referred to the "Handbook of Chemoinformatics", which will be published separately.Johann Gasteiger is the recipient of the 1991 Gmelin-Beilstein Medal of the German Chemical Society for Achievements in Computer Chemistry, and the Herman Skolnik Award of the Division of Chemical Information of the American Chemical Society (ACS) in 1997. Thomas Engel joined the research group headed by Johann Gasteiger at the University of Erlangen-Nuremberg and is a specialist in chemoinformatics.

Author Biography

<b>Johann Gasteiger</b> is the recipient of the 1991 Gmelin-Beilstein Medal of the German Chemical Society of Achievements in Computer Chemistry and the Herman Skolnik Award of the Division of Chemical Information of the American Chemical Society (ACS) in 1997. <p> <b>Thomas Engel</b> joined the research group headed by Johann Gasteiger at the University of Erlangen-Nuremberg and is specialist in chemoinformatics.

Table of Contents

Foreword VII
Preface XXV
Adresses of the Authors XXVII
1 Introduction 1(14)
1.1 The Domain of Chemistry
1(2)
1.2 A Chemist's Fundamental Questions
3(1)
1.3 The Scope of Chemoinformatics
4(2)
1.4 Learning in Chemoinformatics
6(2)
1.5 Major Tasks
8(1)
1.5.1 Representation of the Objects
8(1)
1.5.2 Data
9(1)
1.5.3 Learning
9(1)
1.6 History of Chemoinformatics
9(2)
1.6.1 Structure Databases
10(1)
1.6.2 Quantitative Structure-Activity Relationships
10(1)
1.6.3 Molecular Modeling
10(1)
1.6.4 Structure Elucidation
11(1)
1.6.5 Chemical Reactions and Synthesis Design
11(1)
1.7 The Scope of this Book
11(2)
1.8 Teaching Chemoinformatics
13(2)
2 Representation of Chemical Compounds 15(154)
2.1 Introduction
15(3)
2.2 Chemical Nomenclature
18(5)
2.2.1 Development of Chemical Nomenclature
19(1)
2.2.2 Representation of Chemical Elements
19(1)
2.2.2.1 Characterization of Elements
19(1)
2.2.3 Representation of the Empirical Formulas of (Inorganic) Compounds
20(1)
2.2.3.1 Present-Day Representation
20(1)
2.2.4 Representation of the Empirical Formulas of Organic Compounds
20(1)
2.2.4.1 Present-Day Representation
20(1)
2.2.5 Systematic Nomenclature of Inorganic and Organic Compounds
21(2)
2.3 Line Notations
23(7)
2.3.1 Wiswesser Line Notation
23(2)
2.3.1.1 Applications
25(1)
2.3.2 ROSDAL
25(1)
2.3.2.1 Applications
26(1)
2.3.3 The SMILES Coding
26(1)
2.3.3.1 Applications
27(1)
2.3.4 Sybyl Line Notation
27(3)
2.3.4.1 Applications
30(1)
2.4 Coding the Constitution
30(23)
2.4.1 Graph Theory
31(3)
2.4.1.1 Basics of Graph Theory
32(2)
2.4.2 Matrix Representations
34(6)
2.4.2.1 Adjacency Matrix
35(1)
2.4.2.2 Distance Matrix
36(1)
2.4.2.3 Atom Connectivity Matrix
36(1)
2.4.2.4 Incidence Matrix
36(1)
2.4.2.5 Bond Matrix
36(4)
2.4.3 Connection Table
40(2)
2.4.4 Input and Output of Chemical Structures
42(3)
2.4.5 Standard Structure Exchange Formats
45(2)
2.4.6 Tutorial: Molfiles and SDfles
47(6)
2.4.6.1 Structure of a Molfile
47(4)
2.4.6.2 Structure of an SDfile
51(1)
2.4.6.3 Libraries and Toolkits
51(2)
2.5 Processing Constitutional Information
53(10)
2.5.1 Ring Perception
53(4)
2.5.1.1 Minimum Number of Cycles
55(1)
2.5.1.2 All Cycles
55(1)
2.5.1.3 Smallest Fundamental Basis
55(2)
2.5.2 Unambiguous and Unique Representations
57(2)
2.5.2.1 Structure Isomers and Isomorphism
57(2)
2.5.2.2 Canonicalization
59(1)
2.5.3 The Morgan Algorithm
59(4)
2.5.3.1 Tutorial: Morgan Algorithm
60(3)
2.6 Beyond a Connection Table
63(7)
2.6.1 Deficiencies in Representing Molecular Structures by a Connection Table
63(1)
2.6.2 Representation of Molecular Structures by Electron Systems
64(5)
2.6.2.1 General Concepts
64(1)
2.6.2.2 Simple Single and Double Bonds
64(1)
2.6.2.3 Conjugation and Aromaticity
65(1)
2.6.2.4 Orthogonality of π-Systems
66(1)
2.6.2.5 Non-bonding Orbitals
67(1)
2.6.2.6 Charged Species and Radicals
67(1)
2.6.2.7 Ionized States
68(1)
2.6.2.8 Electron-Deficient Compounds
68(1)
2.6.2.9 Organometallic Compounds
69(1)
2.6.3 Generation of RAMSES from a VB Representation
69(1)
2.7 Special Notations of Chemical Structures
70(5)
2.7.1 Markush Structures
70(1)
2.7.2 Fragment Coding
71(1)
2.7.2.1 Applications
71(1)
2.7.3 Fingerprints
71(1)
2.7.3.1 Hashed Fingerprints
72(1)
2.7.4 Hash Codes
72(3)
2.7.4.1 Applications
74(1)
2.8 Representation of Stereochemistry
75(16)
2.8.1 General Concepts
75(1)
2.8.2 Representation of Configuration Isomers and Molecular Chirality
75(4)
2.8.2.1 Detection and Specification of Chirality
78(1)
2.8.3 Ordered Lists
79(1)
2.8.4 Rotational Lists
80(1)
2.8.5 Permutation Descriptors
81(1)
2.8.6 Stereochemistry in Molfile and SMILES
82(3)
2.8.6.1 Stereochemistry in the Molfile
82(2)
2.8.6.2 Stereochemistry in SMILES
84(1)
2.8.7 Tutorial: Handling of Stereochemistry by Permutation Groups
85(6)
2.8.7.1 Stereochemistry at Tetrahedral Carbon Atoms
86(2)
2.8.7.2 Stereochemistry at Double Bonds
88(3)
2.9 Representation of 3D Structures
91(33)
2.9.1 Walking through the Hierarchy of Chemical Structure Representation
91(1)
2.9.2 Representation of 3D Structures
92(2)
2.9.3 Obtaining 3D Structures and Why They are Needed
94(2)
2.9.4 Automatic 3D Structure Generation
96(7)
2.9.5 Obtaining an Ensemble of Conformations: What is Conformational Analysis?
103(2)
2.9.6 Automatic Generation of Ensembles of Conformations
105(7)
2.9.7 Tutorial: 3D Structure Codes (PDB, STAR, CIF, mmCIF)
112(12)
2.9.7.1 Introduction
112(1)
2.9.7.2 PDB File Format
112(8)
2.9.7.3 STAR File Format and Dictionaries
120(1)
2.9.7.4 CIF File Format (CCDC)
121(2)
2.9.7.5 mmCIF File Format
123(1)
2.9.7.6 Software
123(1)
2.10 Molecular Surfaces
124(5)
2.10.1 van der Waals Surface
125(1)
2.10.2 Connolly Surface
126(1)
2.10.3 Solvent-Accessible Surface
127(1)
2.10.4 Solvent-Excluded Surface (SES)
128(1)
2.10.5 Enzyme Cavity Surface (Union Surface)
128(1)
2.10.6 Isovalue-Based Electron Density Surface
129(1)
2.10.7 Experimentally Determined Surfaces
129(1)
2.11 Visualization of Molecular Models
129(8)
2.11.1 Historical Review
130(1)
2.11.2 Structure Models
131(2)
2.11.2.1 Wire Frame Model
132(1)
2.11.2.2 Capped Sticks Model
132(1)
2.11.2.3 Balls and Sticks Model
133(1)
2.11.2.4 Space-Filling Model
133(1)
2.11.3 Models of Biological Macromolecules
133(2)
2.11.3.1 Cylinder Model
134(1)
2.11.3.2 Ribbon Model
134(1)
2.11.3.3 Tube Model
134(1)
2.11.4 Crystallographic Models
135(1)
2.11.5 Visualization of Molecular Properties
135(2)
2.11.5.1 Properties Based on Isosurfaces
135(2)
2.12 Tools: Chemical Structure Drawing Software - Molecule Editors and Viewers
137(20)
2.12.1 Introduction
137(1)
2.12.2 Molecule Editors
138(8)
2.12.2.1 Stand-Alone Applications
139(5)
2.12.2.2 Web-Based Applications
144(2)
2.12.3 Molecule Viewers
146(30)
2.12.3.1 Stand-Alone Applications
146(9)
2.12.3.2 Web-Based Applications
155(2)
2.13 Tools: 3D Structure Generation on the Web
157(12)
3 Representation of Chemical Reactions 169(34)
3.1 Introduction'
169(3)
3.2 Reaction Types
172(1)
3.3 Reaction Center
173(3)
3.4 Chemical Reactivity
176(7)
3.4.1 Physicochemical Effects
176(3)
3.4.1.1 Charge Distribution
176(1)
3.4.1.2 Inductive Effect
177(1)
3.4.1.3 Resonance Effect
178(1)
3.4.1.4 Polarizability Effect
178(1)
3.4.1.5 Steric Effect
178(1)
3.4.1.6 Stereoelectronic Effects
178(1)
3.4.2 Simple Approaches to Quantifying Chemical Reactivity
179(4)
3.4.2.1 Frontier Molecular Orbital Theory
179(1)
3.4.2.2 Linear Free Energy Relationships (LFER)
179(4)
3.4.2.3 Empirical Reactivity Equations
183(1)
3.5 Reaction Classification
183(13)
3.5.1 Model-Driven Approaches
183(8)
3.5.1.1 Hendrickson's Scheme
183(2)
3.5.1.2 Ugi's Scheme
185(6)
3.5.1.3 InfoChem's Reaction Classification
191(1)
3.5.2 Data-Driven Approaches
191(12)
3.5.2.1 HORACE
191(1)
3.5.2.2 Reaction Landscapes
192(4)
3.6 Stereochemistry of Reactions
196(1)
3.7 Tutorial: Stereochemistry of Reactions
197(6)
4 The Data 203(24)
4.1 Introduction
203(3)
4.1.1 Data, Information, Knowledge
203(1)
4.1.2 The Data Acquisition Pathway
204(2)
4.2 Data Acquisition
206(7)
4.2.1 Why Does the Quality of Data Matter?
206(1)
4.2.2 Data Complexity
207(1)
4.2.3 Experimental Data
208(1)
4.2.4 Data Exchange
209(2)
4.2.4.1 DAT files
209(1)
4.2.4.2 JCAMP-DX
210(1)
4.2.4.3 PMML
211(1)
4.2.5 Real-World Data and their Potential Drawbacks
211(2)
4.3 Data Pre-processing
213(8)
4.3.1 Mean-Centering, Scaling, and Autoscaling
213(2)
4.3.2 Advanced Methods
215(2)
4.3.2.1 Fast Fourier Transformation
215(1)
4.3.2.2 Wavelet Transformation
216(1)
4.3.2.3 Singular Value Decomposition
216(1)
4.3.3 Variable Selection
217(3)
4.3.3.1 Genetic Algorithm (GA)-Based Solutions
217(2)
4.3.3.2 Orthogonalization-Based Solutions
219(1)
4.3.3.3 Simulated Annealing (SA)-Based Solutions
219(1)
4.3.3.4 PCA-Based Solutions
219(1)
4.3.4 Object Selection
220(1)
4.4 Preparation of Datasets for Validation of the Model Quality
221(6)
4.4.1 Training and Test Datasets
221(1)
4.4.2 Compilation of Test Sets
222(5)
5 Databases and Data Sources in Chemistry 227(64)
5.1 Introduction
227(1)
5.2 Basic Database Theory
228(8)
5.2.1 Databases in the Information System
228(2)
5.2.2 Search Engine
230(1)
5.2.3 Access to Databases
230(2)
5.2.4 Types of Database Systems
232(4)
5.2.4.1 Hierarchical Database System
232(1)
5.2.4.2 Network Model
233(2)
5.2.4.3 Relational Model
235(1)
5.2.4.4 Object-Based Model
236(1)
5.3 Classification of Databases
236(5)
5.3.1 Literature Databases
238(1)
5.3.2 Factual Databases
238(2)
5.3.2.1 Numeric Databases
238(2)
5.3.2.2 Catalogs of Chemical Compounds
240(1)
5.3.2.3 Research Project Databases
240(1)
5.3.2.4 Metadatabases
240(1)
5.3.3 Structure Databases
240(1)
5.3.4 Reaction Databases
240(1)
5.4 Literature Databases
241(1)
5.4.1 Chemical Abstracts File
241(1)
5.4.2 SCISEARCH
241(1)
5.4.3 Medline (Medical Literature, Analysis, and Retrieval System Online)
241(1)
5.5 Tutorial: Using the Chemical Abstracts System
242(5)
5.5.1 Online Access
242(1)
5.5.2 Access to CAS with SciFinder Scholar 2002
242(5)
5.5.2.1 Getting Started
242(2)
5.5.2.2 Searching within Various Topics
244(3)
5.6 Property (Numeric) Databases
247(2)
5.6.1 Beilstein Database
248(1)
5.6.2 Gmelin
248(1)
5.6.3 DETHERM
249(1)
5.7 Tutorial: Searching in the Beilstein Database
249(8)
5.7.1 Example 1: Combined Structure and Fact Retrieval
249(5)
5.7.2 Example 2: Reaction Retrieval
254(3)
5.8 Spectroscopic Databases
257(1)
5.8.1 SpecInfo
258(1)
5.9 Crystallographic Databases
258(2)
5.9.1 Inorganic Crystal Structure Database (ICSD)
259(1)
5.9.2 Cambridge Structural Database (CSD)
259(1)
5.9.3 Protein Data Bank (PDB)
259(1)
5.10 Molecular Biology Databases
260(2)
5.10.1 GenBank (Genetic Sequence Bank)
260(1)
5.10.2 EMEL
261(1)
5.10.3 PIR (Protein Information Resource)
261(1)
5.10.4 SWISS-PROT
261(1)
5.10.5 CAS Registry
261(1)
5.11 Structure Databases
262(1)
5.11.1 CAS Registry
262(1)
5.11.2 National Cancer Institute (NCI) Database
262(1)
5.12 Chemical Reaction Databases
263(1)
5.12.1 CASREACT
263(1)
5.12.2 ChemInform RX
264(1)
5.13 Tutorial: Searching in the ChemInform Reaction Database
264(4)
5.13.1 Introduction
264(1)
5.13.2 Example 1: Reaction Retrieval
264(2)
5.13.3 Example 2: Advanced Reaction Retrieval
266(1)
5.13.4 Classifying Reactions on a Hit List
267(1)
5.14 Patent Databases
268(2)
5.14.1 INPADOC
269(1)
5.14.2 World Patent Index (WPINDEX)
270(1)
5.14.3 MARPAT
270(1)
5.15 Chemical Information on the Internet
270(1)
5.16 Tutorial: Searching the Internet for Chemical Information
271(3)
5.17 Tutorial: Searching Environmental Information in the Internet
274(4)
5.17.1 Introduction: Difficulties in Extracting Scientific Environmental Information from the Internet
274(1)
5.17.2 Ways of Searching for Environmental Information on the Internet
275(21)
5.17.2.1 Metadatabases and Portals
275(1)
5.17.2.2 Search Engines
275(2)
5.17.2.3 Databases
277(1)
5.18 Tools: The Internet (Online Databases in Chemistry)
278(13)
6 Searching Chemical Structures 291(28)
6.1 Introduction
291(1)
6.2 Full Structure Search
292(4)
6.3 Substructure Search
296(7)
6.3.1 Basic Ideas
296(2)
6.3.2 Backtracking Algorithm
298(3)
6.3.3 Optimization of the Backtracking Algorithm
301(1)
6.3.4 Screening
302(1)
6.4 Similarity Search
303(10)
6.4.1 Similarity Basics
303(1)
6.4.2 Similarity Measures
304(6)
6.4.3 The Similarity Search Process
310(10)
6.4.3.1 Object Selection
310(1)
6.4.3.2 Descriptor Selection and Encoding
311(1)
6.4.3.3 Similarity Measure Selection
312(1)
6.4.3.4 Query Object Specification
312(1)
6.4.3.5 Similarity Scores
312(1)
6.4.3.6 Application Areas
313(1)
6.5 Three-Dimensional Structure Search Methods
313(6)
7 Calculation of Physical and Chemical Data 319(82)
7.1 Empirical Approaches to the Calculation of Properties
320(18)
7.1.1 Introduction
320(1)
7.1.2 Additivity of Atomic Contributions
321(2)
7.1.2.1 Hybridization States
322(1)
7.1.3 Additivity of Bond Contributions
323(1)
7.1.4 Additivity of Group Contributions
323(2)
7.1.5 Effects of Rings
325(1)
7.1.6 Drug-Receptor Binding Energies
326(1)
7.1.7 Attenuation Models
327(11)
7.1.7.1 Calculation of Charge Distribution
329(4)
7.1.7.2 Polarizability Effect
333(5)
7.2 Molecular Mechanics
338(21)
7.2.1 Introduction
338(1)
7.2.2 No Force Field Calculation Without Atom Types
339(1)
7.2.3 The Functional Form of Common Force Fields
339(10)
7.2.3.1 Bond Stretching
340(2)
7.2.3.2 Angle Bending
342(1)
7.2.3.3 Torsional Terms
343(1)
7.2.3.4 Out-of-Plane Bending
343(2)
7.2.3.5 Electrostatic Interactions
345(1)
7.2.3.6 Van der Waals Interactions
346(2)
7.2.3.7 Cross-Terms
348(1)
7.2.4 Available Force Fields
349(10)
7.2.4.1 Force Fields for Small Molecules
349(3)
7.2.4.2 Force Fields for Biomolecules
352(7)
7.3 Molecular Dynamics
359(17)
7.3.1 Introduction
359(1)
7.3.2 The Continuous Movement of Molecules
359(1)
7.3.3 Methods
360(6)
7.3.3.1 Algorithms
361(1)
7.3.3.2 Ways to Speed up the Calculations
362(1)
7.3.3.3 Solvent Effects
363(3)
7.3.3.4 Periodic Boundary Conditions
366(1)
7.3.4 Constant Energy, Temperature, or Pressure?
366(2)
7.3.5 Long-Range Forces
368(1)
7.3.6 Application of Molecular Dynamics Techniques
369(7)
7.4 Quantum Mechanics
376(25)
7.4.1 Hückel Molecular Orbital Theory
376(5)
7.4.2 Semi-empirical Molecular Orbital Theory
381(3)
7.4.3 Ab Initio Molecular Orbital Theory
384(5)
7.4.4 Density Functional Theory
389(1)
7.4.5 Properties from Quantum Mechanical Calculations
390(4)
7.4.5.1 Net Atomic Charges
391(1)
7.4.5.2 Dipole and Higher Multipole Moments
392(1)
7.4.5.3 Polarizabilities
392(1)
7.4.5.4 Orbital Energies
393(1)
7.4.5.5 Surface Descriptors
393(1)
7.4.5.6 Local Ionization Potential
393(1)
7.4.6 Quantum Mechanical Techniques for Very Large Molecules
394(1)
7.4.6.1 Linear Scaling Methods
394(1)
7.4.6.2 Hybrid QM/MM Calculations
395(1)
7.4.7 The Future of Quantum Mechanical Methods in Chemoinformatics
395(6)
8 Calculation of Structure Descriptors 401(38)
8.1 Introduction
401(2)
8.1.1 Definition of the Term "Structure Descriptor"
403(1)
8.1.2 Classification of Structure Descriptors
403(1)
8.2 Structure Keys and 1 D Fingerprints
403(4)
8.2.1 Distance and Similarity Measures
405(2)
8.3 Topological Descriptors
407(5)
8.3.1 Some Fundamentals of Graph Theory
407(1)
8.3.2 The Adjacency Matrix
408(1)
8.3.3 The Laplacian Matrix
409(1)
8.3.4 The Distance Matrix
409(1)
8.3.5 The Wiener Index
410(1)
8.3.6 The Randic Connectivity Index
411(1)
8.3.7 Topological Autocorrelation Vectors
411(1)
8.3.8 Feature Trees
411(1)
8.3.9 Further Topological Descriptors
412(1)
8.4 3D Descriptors
412(6)
8.4.1 3D Structure Generation
412(1)
8.4.2 3D Autocorrelation
413(2)
8.4.2.1 Example: Xylene Isomers
413(2)
8.4.3 3D Molecule Representation of Structures Based on Electron Diffraction Code (3D MoRSE Code)
415(1)
8.4.4 Radial Distribution Function Code
415(3)
8.5 Chirality Descriptors
418(2)
8.5.1 Quantitative Descriptions of Chirality
418(1)
8.5.2 Continuous Chirality Measure (CCM)
418(1)
8.5.3 Chirality Codes
419(1)
8.6 Tutorial: Conformation-Independent and Conformation-Dependent Chirality Codes
420(7)
8.6.1 Introduction
420(1)
8.6.2 Conformation-Independent Chirality Code (CICO)
420(3)
8.6.2.1 Preparatory Calculations
420(1)
8.6.2.2 Neighborhoods of Atoms Bonded to the Chiral Center
421(1)
8.6.2.3 Enumeration of Combinations
421(1)
8.6.2.4 Characterization of Combinations
421(1)
8.6.2.5 Generation of the Code
422(1)
8.6.3 Conformation-Dependent Chirality Code (CDCC)
423(4)
8.6.3.1 Overview
423(1)
8.6.3.2 Enumeration of combinations
423(1)
8.6.3.3 Ranking of the Four Atoms in a Combination
423(1)
8.6.3.4 Characterization of Combinations
423(1)
8.6.3.5 Generation of the Code
424(1)
8.6.3.6 Example of an Application
424(3)
8.7 Further Descriptors
427(3)
8.7.1 Comparative Molecular Field Analysis (CoMFA)
428(1)
8.7.2 BCUT Descriptors
428(1)
8.7.3 4D-QSAR
429(1)
8.7.4 HYBOT Descriptors
429(1)
8.8 Descriptors that are not Structure-Based
430(1)
8.9 Properties of Structure Descriptors
431(8)
9 Methods for Data Analysis 439(48)
9.1 Introduction
439(1)
9.2 Machine Learning Techniques
440(2)
9.2.1 Machine Learning Process
441(1)
9.2.2 Unsupervised Learning
441(1)
9.2.3 Supervised Learning
441(1)
9.3 Decision Trees
442(1)
9.4 Chemometrics
442(10)
9.4.1 Multivariate Statistics
443(1)
9.4.2 Correlation
444(2)
9.4.3 Multiple Linear Regression Analysis (MLRA)
446(1)
9.4.4 Principal Component Analysis (PCA)
446(2)
9.4.5 Principal Component Regression (PCR)
448(1)
9.4.6 Partial Least Squares Regression/Projection to Latent Structures (PLS)
449(1)
9.4.7 Example: Ion Concentrations in Mineral Waters
449(1)
9.4.8 Tools: Electronic Data Analysis Service (ELECTRAS)
449(3)
9.5 Neural Networks
452(13)
9.5.1 Modeling the Brain: Biological Neurons versus Artificial Neurons
452(2)
9.5.2 Networks
454(2)
9.5.2.1 Training
454(1)
9.5.2.2 Learning Strategies
455(1)
9.5.3 Kohonen Network
456(2)
9.5.3.1 Architecture
456(1)
9.5.3.2 Training
456(2)
9.5.4 Tutorial: Application of a Kohonen Network for the Classification of Olive Oils using ELECTRAS
458(1)
9.5.5 Counter-propagation Network
459(2)
9.5.5.1 Architecture
459(1)
9.5.5.2 Training
460(1)
9.5.6 Tools: SONNIA (Self Organizing Neural Network for Information Analysis)
461(1)
9.5.7 Back-propagation Network
462(3)
9.5.7.1 Architecture
462(1)
9.5.7.2 Training
462(1)
9.5.8 Tutorial: Neural Networks
463(1)
9.5.9 Tasks for Neural Networks and Selection of an Appropriate Neural Network Method
464(1)
9.6 Fuzzy Sets and Fuzzy Logic
465(2)
9.6.1 Some Concepts
465(1)
9.6.2 Application of Fuzzy Logic in Chemistry
466(1)
9.7 Genetic Algorithms
467(5)
9.7.1 Representation and Encoding of Chromosomes
468(1)
9.7.2 Initialization of Individuals
468(1)
9.7.3 Fitness and Objective Function
469(1)
9.7.4 Selection Functions
469(1)
9.7.5 Genetic Operators
470(1)
9.7.6 Tutorial: Select ion of Relevant Descriptors in a Structure-Activity Study
471(1)
9.7.6.1 Example: Drug Design
471(1)
9.8 Data Mining
472(2)
9.8.1 Classification
473(1)
9.8.2 Clustering and Detection of Similarities
473(1)
9.8.3 Prediction and Regression
473(1)
9.8.4 Association
473(1)
9.8.5 Detection of Descriptions
474(1)
9.8.6 Data Mining in Chemistry
474(1)
9.9 Visual Data Mining
474(4)
9.9.1 Advantages of Visual Data Mining Approaches
475(1)
9.9.2 Information Visualization Techniques
476(2)
9.9.2.1 Data Types
476(1)
9.9.2.2 Visualization Techniques
476(2)
9.9.2.3 Interaction and Distortion Techniques
478(1)
9.10 Expert Systems
478(9)
9.10.1 Architecture of Expert Systems
478(1)
9.10.2 Tasks of Expert Systems
479(1)
9.10.3 Expert Systems in Chemistry
480(7)
9.10.3.1 DENDRAL
480(1)
9.10.3.2 EROS
481(6)
10 Applications 487(132)
10.1 Prediction of Properties of Compounds
487(28)
10.1.1 Introduction
487(2)
10.1.2 Linear Free Energy Relationships (LFER)
489(1)
10.1.3 Quantitative Structure-Property Relationships (QSPR)
489(3)
10.1.3.1 Structure Representation
489(1)
10.1.3.2 Descriptor Analysis
490(1)
10.1.3.3 Model Building
490(2)
10.1.4 Estimation of Octanol/Water Partition Coefficient (log POW)
492(3)
10.1.4.1 Other Substructure-Based Methods
493(1)
10.1.4.2 QSPR Models
494(1)
10.1.5 Estimation of Aqueous Solubility (log S)
495(9)
10.1.5.1 Solubility Prediction Methods
495(3)
10.1.5.2 Tutorial: Developing Models for Solubility Prediction with 18 Topological Descriptors
498(3)
10.1.5.3 Models with 32 Radial Distribution Function Values and Eight Additional Descriptors
501(3)
10.1.6 Prediction of the Toxicity of Compounds
504(4)
10.1.6.1 How to Quantify Toxicity
504(1)
10.1.6.2 Modeling Toxicity
504(4)
10.1.7 Tutorial: Classifying Compounds into Different Modes of Action
508(3)
10.1.8 Conclusion and Future Outlook
511(4)
10.2 Structure-Spectra Correlations
515(27)
10.2.1 Introduction
515(1)
10.2.2 Molecular Descriptors
516(2)
10.2.2.1 Fragment-Based Descriptors
516(1)
10.2.2.2 Topological Structure Codes
516(1)
10.2.2.3 Three-Dimensional Molecular Descriptors
517(1)
10.2.3 13C NMR Spectra
518(2)
10.2.4 1H NMR Spectra
520(9)
10.2.4.1 Prediction of Chemical Shifts
520(4)
10.2.4.2 Tools: Prediction of 1H NMR Chemical Shifts
524(5)
10.2.5 Infrared Spectra
529(5)
10.2.5.1 Overview
529(1)
10.2.5.2 Infrared Spectra Simulation
530(1)
10.2.5.3 Tools: TeleSpec - Online Service for the Simulation of Infrared Spectra
530(4)
10.2.6 Mass Spectra
534(1)
10.2.7 Computer-Assisted Structure Elucidation
535(7)
10.3 Chemical Reactions and Synthesis Design
542(55)
10.3.1 The Prediction of Chemical Reactions
542(25)
10.3.1.1 Introduction
542(2)
10.3.1.2 Knowledge Extraction from Reaction Databases
544(1)
10.3.1.3 Tutorial: Prediction of the Regiochemistry in Pyrazole Synthesis
545(4)
10.3.1.4 CAMEO
549(1)
10.3.1.5 EROS
550(3)
10.3.1.6 Tutorial: Modeling the Degradation of s-Triazine Herbicides in Soil
553(3)
10.3.1.7 Biochemical Pathways
556(8)
10.3.1.8 Tutorial: Multidimensional Searching in Biochemical Pathways
564(3)
10.3.2 Computer-Assisted Synthesis Design
567(30)
10.3.2.1 Introduction
567(2)
10.3.2.2 Basic Terms
569(4)
10.3.2.3 Concepts for Computer-Assisted Organic Synthesis
573(1)
10.3.2.4 Synthesis Design Systems
573(12)
10.3.2.5 Tutorial: Synthesis Design with the WODCA Program
585(12)
10.4 Drug Design
597(30)
10.4.1 Introduction
597(1)
10.4.2 Some Economic Considerations Affecting Drug Design
598(1)
10.4.3 Definitions of some Terms in the Context of Drug Design
599(1)
10.4.4 The Drug Discovery Process
600(2)
10.4.4.1 Target Identification and Validation
600(1)
10.4.4.2 Lead Finding and Optimization
601(1)
10.4.4.3 Preclinical and Clinical Trials
602(1)
10.4.5 Fields of Application of Chemoinformatics in Drug Design
602(3)
10.4.5.1 Subset Selection and Similarity/Diversity Search
602(1)
10.4.5.2 Analysis of HTS Data
603(1)
10.4.5.3 Virtual Screening
603(1)
10.4.5.4 Design of Combinatorial Libraries
604(1)
10.4.5.5 Further Issues
605(1)
10.4.6 Ligand- and Structure-based Drug Design
605(7)
10.4.6.1 Ligand-Based Drug Design
607(1)
10.4.6.2 Structure-Based Drug Design
608(4)
10.4.7 Applications
612(4)
10.4.7.1 Distinguishing Molecules of Different Biological Activities and Finding a New Lead Structure - An Example of Ligand-Based Drug Design
612(3)
10.4.7.2 Examples of Structure-Based Drug Design
615(1)
10.4.8 Outlook - Future Perspectives
616(3)
11 Future Directions 619(8)
Appendix 627(8)
A.1 Software Development
627(5)
A.1.1 Programming Languages
627(1)
A.1.2 Object-Oriented Programming
628(1)
A.1.3 Universal Modeling Language (UML)
628(1)
A.1.4 Design Patterns
629(1)
A.1.5 Graphical User Interface
629(1)
A.1.6 Source Code Documentation
629(1)
A.1.7 Version Control
630(2)
A.2 Mathematical Excursion into Matrices and Determinants
632(3)
A.2.1 Mathematical Example
633(1)
A.2.2 Chemical Example of an Atom Connectivity Matrix
633(2)
Index 635

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program