did-you-know? rent-now

Rent More, Save More! Use code: ECRENTAL

did-you-know? rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9783433033104

Computational Structural Concrete Theory and Applications

by
  • ISBN13:

    9783433033104

  • ISBN10:

    3433033102

  • Edition: 2nd
  • Format: Paperback
  • Copyright: 2022-11-21
  • Publisher: Ernst & Sohn

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $101.33 Save up to $40.53
  • Rent Book $60.80
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-4 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

How To: Textbook Rental

Looking to rent a book? Rent Computational Structural Concrete Theory and Applications [ISBN: 9783433033104] for the semester, quarter, and short term or search our site for other textbooks by Haussler-Combe, Ulrich. Renting a textbook can save you up to 90% from the cost of buying.

Summary

Concrete is by far the most used building material due to its advantages: it is shapeable, cost-effective and available everywhere. Combined with reinforcement it provides an immense bandwidth of properties and may be customized for a huge range of purposes. Thus, concrete is the building material of the 20th century. To be the building material of the 21th century its sustainability has to move into focus. Reinforced concrete structures have to be designed expending less material whereby their load carrying potential has to be fully utilized.
Computational methods such as Finite Element Method (FEM) provide essential tools to reach the goal. In combination with experimental validation, they enable a deeper understanding of load carrying mechanisms. A more realistic estimation of ultimate and serviceability limit states can be reached compared to traditional approaches. This allows for a significantly improved utilization of construction materials and a broader horizon for innovative structural designs opens up.
However, sophisticated computational methods are usually provided as black boxes. Data is fed in, the output is accepted as it is, but an understanding of the steps in between is often rudimentary. This has the risk of misinterpretations, not to say invalid results compared to initial problem definitions. The risk is in particular high for nonlinear problems. As a composite material, reinforced concrete exhibits nonlinear behaviour in its limit states, caused by interaction of concrete and reinforcement via bond and the nonlinear properties of the components. Its cracking is a regular behaviour. The book aims to make the mechanisms of reinforced concrete transparent from the perspective of numerical methods. In this way, black boxes should also become transparent.
Appropriate methods are described for beams, plates, slabs and shells regarding quasi-statics and dynamics. Concrete creeping, temperature effects, prestressing, large displacements are treated as examples. State of the art concrete material models are presented. Both the opportunities and the pitfalls of numerical methods are shown. Theory is illustrated by a variety of examples. Most of them are performed with the ConFem software package implemented in Python and available under open-source conditions.

Author Biography

Ulrich Häussler-Combe studied structural engineering at the Technical University Dortmund and gained his doctorate from the University Karlsruhe. Following ten years of construction engineering and development in computational engineering, he came back to the University Karlsruhe as a lecturer for computer aided design and structural dynamics. In 2003 he was appointed as professor for special concrete structures at the Technical University Dresden. He retired in 2021 and currently is still active as guest professor at the Technical University Munich.

Table of Contents

Preface
Notations
List of Examples
1 INTRODUCTION
2 FINITE ELEMENTS OVERVIEW
2.1 Modeling Basics
2.2 Discretization Outline
2.3 Elements
2.4 Material Behavior
2.5 Weak Equilibrium
2.6 Spatial Discretization
2.7 Numerical Integration
2.8 Equation Solution Methods
2.9 Discretization Errors
3 UNIAXIAL STRUCTURAL CONCRETE BEHAVIOR
3.1 Uniaxial Stress-Strain Behavior of Concrete
3.2 Long-Term Behavior -
Creep and Imposed Strains
3.3 Reinforcing Steel Stress-Strain Behavior
3.4 Bond between Concrete and Reinforcement
3.5 The Smeared Crack Model
3.6 The Reinforced Tension Bar
3.7 Tension Stiffening of Reinforced Bar
4 STRUCTURAL BEAMS AND FRAMES
4.1 Cross-Sectional Behavior
4.2 Equilibrium of Beams
4.3 Finite Element Types for Plane Beams
4.4 System Building and Solution
4.5 Creep of Concrete
4.6 Temperature and Shrinkage
4.7 Tension Stiffening
4.8 Prestressing
4.9 Large Displacements -
2nd-Order Analysis
4.10 Dynamics
5 STRUT-AND-TIE MODELS
5.1 Elastic Plate Solutions
5.2 Strut-and-Tie Modeling
5.3 Solution Methods for Trusses
5.4 Rigid-Plastic Truss Models
5.5 Application Aspects
6 MULTIAXIAL CONCRETE MATERIAL BEHAVIOR
6.1 Basics
6.1.1 Continua and Scales
6.1.2 Characteristics of Concrete Behavior
6.2 Continuum Mechanics
6.3 Isotropy, Linearity, and Orthotropy
6.4 Nonlinear Material Behavior
6.5 Elastoplasticity
6.6 Damage
6.7 Damaged Elastoplasticity
6.8 The Microplane Model
6.9 General Requirements for Material Laws
7 CRACK MODELING AND REGULARIZATION
7.1 Basic Concepts of Crack Modeling
7.2 Mesh Dependency
7.3 Regularization
7.4 Multiaxial Smeared Crack Model
7.5 Gradient Methods
7.6 Discrete Crack Modeling Overview
7.7 A Strong Discontinuity Approach
8 PLATES
8.1 Lower Bound Limit Analysis
8.2 Cracked Concrete Modeling
8.3 Reinforcement and Bond
8.4 Integrated Reinforcement
8.5 Embedded Reinforcement with Flexible Bond
9 SLABS
9.1 Classification
9.2 Cross-Sectional Behavior
9.3 Equilibrium of Slabs
9.4 Reinforced Concrete Cross Sections
9.5 Slab Elements
9.6 System Building and Solution Methods
9.7 Lower Bound Limit State Analysis
9.8 Nonlinear Kirchhoff Slabs
9.9 Upper Bound Limit State Analysis
10 SHELLS
10.1 Geometry and Displacements
10.2 Deformations
10.3 Shell Stresses and Material Laws
10.4 System Building
10.5 Slabs and Beams as a Special Case
10.6 Locking
10.7 Reinforced Concrete Shells
11 RANDOMNESS AND RELIABILITY
11.1 Uncertainty and Randomness
11.2 Failure Probability
11.3 Design and Safety Factors
12 CONCLUDING REMARKS
A SOLUTION METHODS
A.1 Nonlinear Algebraic Equations
A.2 Transient Analysis
A.3 Stiffness for Linear Concrete Compression
A.4 The Arc Length Method
B MATERIAL STABILITY
C CRACK WIDTH ESTIMATION
D TRANSFORMATIONS OF COORDINATE SYSTEMS
E REGRESSION ANALYSIS
INDEX
LIST OF EXAMPLES
3.1 Tension bar with localization
3.2 Tension bar with creep and imposed strains
3.3 Simple uniaxial smeared crack model
3.4 Reinforced concrete tension bar
4.1 Moment-curvature relations for given normal forces
4.2 Simple reinforced concrete (RC) beam
4.3 Creep deformations on RC beam
4.4 Effect of temperature actions on a RC beam
4.5 Effect of tension stiffening on a RC beam with external and temperature loading
4.6 Prestressed RC beam
4.7 Stability limit of cantilever column
4.8 Ultimate limit for RC cantilever column
4.9 Beam under impact load
5.1 Continuous interpolation of stress fields with the quad element
5.2 Deep beam with strut-and-tie model
5.3 Corbel with an elastoplastic strut-and-tie model
6.1 Mises elastoplasticity for uniaxial behavior
6.2 Uniaxial stress-strain relations with Hsieh-Ting-Chen damage
6.3 Stability of Hsieh-Ting-Chen uniaxial damage
6.4 Microplane uniaxial stress-strain relations with de Vree damage
7.1 Plain concrete plate with notch
7.2 Plain concrete plate with notch and crack band regularization
7.3 2D smeared crack model with elasticity
7.4 Gradient damage formulation for the uniaxial two-node bar
7.5 Phase field formulation for the uniaxial tension bar
7.6 Plain concrete plate with notch and SDA crack modeling
8.1 Reinforcement design for a deep beam with a limit state analysis
8.2 Simulation of cracked reinforced deep beam
8.3 Simulation of a single fiber connecting a dissected continuum
8.4 Reinforced concrete plate regarding flexible bond
9.1 Linear elastic rectangular slab with opening and free edges
9.2 Reinforcement design for a slab with opening and free edges with a limit state analysis
9.3 Computation of shear forces and shear design
9.4 Elastoplastic slab with opening and free edges
9.5 Simple RC slab under concentrated loading
9.6 Simple RC slab with yield line method and distributed loading
9.7 Simple RC slab with yield line method and concentrated loading
10.1 Convergence study for linear simple slab
10.2 Simple RC slab with interaction of normal forces and bending
11.1 Analytical failure probability of cantilever column
11.2 Approximate failure probability of cantilever column with a Monte Carlo integration
11.3 Simple partial safety factor derivation

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program