rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780130847881

Digital Communications Fundamentals and Applications

by
  • ISBN13:

    9780130847881

  • ISBN10:

    0130847887

  • Edition: 2nd
  • Format: Hardcover
  • Copyright: 2001-01-11
  • Publisher: Prentice Hall
  • View Upgraded Edition
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $130.00

Summary

The clear, easy-to-understand introduction to digital communications Completely updated coverage of today's most critical technologies Step-by-step implementation coverage Trellis-coded modulation, fading channels, Reed-Solomon codes, encryption, and more Exclusive coverage of maximizing performance with advanced "turbo codes" "This is a remarkably comprehensive treatment of the field, covering in considerable detail modulation, coding (both source and channel), encryption, multiple access and spread spectrum. It can serve both as an excellent introduction for the graduate student with some background in probability theory or as a valuable reference for the practicing ommunication system engineer. For both communities, the treatment is clear and well presented." – Andrew Viterbi, The Viterbi Group Master every key digital communications technology, concept, and technique. Digital Communications, Second Edition is a thoroughly revised and updated edition of the field's classic, best-selling introduction. With remarkable clarity, Dr. Bernard Sklar introduces every digital communication technology at the heart of today's wireless and Internet revolutions, providing a unified structure and context for understanding them -- all without sacrificing mathematical precision. Sklar begins by introducing the fundamentals of signals, spectra, formatting, and baseband transmission. Next, he presents practical coverage of virtually every contemporary modulation, coding, and signal processing technique, with numeric examples and step-by-step implementation guidance. Coverage includes: Signals and processing steps: from information source through transmitter, channel, receiver, and information sink Key tradeoffs: signal-to-noise ratios, probability of error, and bandwidth expenditure Trellis-coded modulation and Reed-Solomon codes: what's behind the math Synchronization and spread spectrum solutions Fading channels: causes, effects, and techniques for withstanding fading The first complete how-to guide to turbo codes: squeezing maximum performance out of digital connections Implementing encryption with PGP, the de facto industry standard Whether you're building wireless systems, xDSL, fiber or coax-based services, satellite networks, or Internet infrastructure, Sklar presents the theory and the practical implementation details you need. With nearly 500 illustrations and 300 problems and exercises, there's never been a faster way to master advanced digital communications. CD-ROM INCLUDED The CD-ROM contains a complete educational version of Elanix'SystemView DSP design software, as well as detailed notes for getting started, a comprehensive DSP tutorial, and over 50 additional communications exercises.

Author Biography

DR. BERNARD SKLAR has over 40 years of experience in technical design and management positions at Republic Aviation, Hughes Aircraft, Litton Industries, and at The Aerospace Corporation, where he helped develop the MILSTAR satellite system. He is now head of advanced systems at Communications Engineering Services, a consulting company he founded in 1984. He has taught engineering courses at several universities, including UCLA and USC, and has trained professional engineers worldwide.

Table of Contents

(NOTE: Each chapter concludes with a Conclusion, References, Problems, Questions, and CD Exercises.)
1. Signals and Spectra.

Digital Communication Signal Processing. Classification of Signals. Spectral Density. Autocorrelation. Random Signals. Signal Transmission through Linear Systems. Bandwidth of Digital Data.

2. Formatting and Baseband Modulation.
Baseband Systems. Formatting Textual Data (Character Coding). Messages, Characters, and Symbols. Formatting Analog Information. Sources of Corruption. Pulse Code Modulation. Uniform and Nonuniform Quantization. Baseband Modulation. Correlative Coding.

3. Baseband Demodulation/Detection.
Signals and Noise. Detection of Binary Signals in Gaussian Noise. Intersymbol Interference. Equalization.

4. Bandpass Modulation and Demodulation/Detection.
Why Modulate? Digital Bandpass Modulation Techniques. Detection of Signals in Gaussian Noise. Coherent Detection. Noncoherent Detection. Complex Envelope. Error Performance for Binary Systems. M-ary Signaling and Performance. Symbol Error Performance for M-ary Systems (M>>2).

5. Communications Link Analysis.
What the System Link Budget Tells the System Engineer. The Channel. Received Signal Power and Noise Power. Link Budget Analysis. Noise Figure, Noise Temperature, and System Temperature. Sample Link Analysis. Satellite Repeaters. System Trade-Offs.

6. Channel Coding: Part 1.
Waveform Coding. Types of Error Control. Structured Sequences. Linear Block Codes. Error-Detecting and Correcting Capability. Usefulness of the Standard Array. Cyclic Codes. Well-Known Block Codes.

7. Channel Coding: Part 2.
Convolutional Encoding. Convolutional Encoder Representation. Formulation of the Convolutional Decoding Problem. Properties of Convolutional Codes. Other Convolutional Decoding Algorithms.

8. Channel Coding: Part 3.
Reed-Solomon Codes. Interleaving and Concatenated Codes. Coding and Interleaving Applied to the Compact Disc Digital Audio System. Turbo Codes.

Appendix 8A. The Sum of Log-Likelihood Ratios.

9. Modulation and Coding Trade-Offs.
Goals of the Communications System Designer. Error Probability Plane. Nyquist Minimum Bandwidth. Shannon-Hartley Capacity Theorem. Bandwidth Efficiency Plane. Modulation and Coding Trade-Offs. Defining, Designing, and Evaluating Systems. Bandwidth-Efficient Modulations. Modulation and Coding for Bandlimited Channels. Trellis-Coded Modulation.

10. Synchronization.
Introduction. Receiver Synchronization. Network Synchronization.

11. Multiplexing and Multiple Access.
Allocation of the Communications Resource. Multiple Access Communications System and Architecture. Access Algorithms. Multiple Access Techniques Employed with INTELSAT. Multiple Access Techniques for Local Area Networks.

12. Spread-Spectrum Techniques.
Spread-Spectrum Overview. Pseudonoise Sequences. Direct-Sequence Spread-Spectrum Systems. Frequency Hopping Systems. Synchronization. Jamming Considerations. Commercial Applications. Cellular Systems.

13. Source Coding.
Sources. Amplitude Quantizing. Differential Pulse-Code Modulation. Adaptive Prediction. Block Coding. Transform Coding. Source Coding for Digital Data. Examples of Source Coding.

14. Encryption and Decryption.
Models, Goals, and Early Cipher Systems. The Secrecy of a Cipher System. Practical Security. Stream Encryption. Public Key Cryptosystems. Pretty Good Privacy.

15. Fading Channels.
The Challenge of Communicating over Fading Channels. Characterizing Mobile-Radio Propagation. Signal Time-Spreading. Time Variance of the Channel Caused by Motion. Mitigating the Degradation Effects of Fading. Summary of the Key Parameters Characterizing Fading Channels. Applications: Mitigating the Effects of Frequency-Selective Fading.

A. A Review of Fourier Techniques.
Signals, Spectra, and Linear Systems. Fourier Techniques for Linear System Analysis. Fourier Transform Properties. Useful Functions. Convolution. Tables of Fourier Transforms and Operations.

B. Fundamentals of Statistical Decision Theory.
Bayes' Theorem. Decision Theory. Signal Detection Example.

C. Response of a Correlator To White Noise.
D. Often-Used Identities.
E. s-Domain, z-Domain and Digital Filtering.
F. List of Symbols.
G. SystemView by ELANIX Guide to the CD.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Excerpts

PREFACE This second edition ofDigital Communications: Fundamentals and Applicationsrepresents an update of the original publication. The key features that have been updated are: The error-correction coding chapters have been expanded, particularly in the areas of Reed-Solomon codes, turbo codes, and trellis-coded modulation. A new chapter on fading channels and how to mitigate the degrading effects of fading has been introduced. Explanations and descriptions of essential digital communication concepts have been amplified. End-of-chapter problem sets have been expanded. Also, end-of-chapter question sets (and where to find the answers), as well as end-of-chapter CD exercises have been added. A compact disc (CD) containing an educational version of the design software SystemView by ELANIX accompanies the textbook. The CD contains a workbook with over 200 exercises, as well as a concise tutorial on digital signal processing (DSP). CD exercises in the workbook reinforce material in the textbook; concepts can be explored by viewing waveforms with a windows-based PC and by changing parameters to see the effects on the overall system. Some of the exercises provide basic training in using SystemView; others provide additional training in DSP techniques. The teaching of a one-semester university course proceeds in a very different manner compared with that of a short-course in the same subject. At the university, one has the luxury of time--time to develop the needed skills and mathematical tools, time to practice the ideas with homework exercises. In a short-course, the treatment is almost backwards compared with the university. Because of the time factor, a short-course teacher must "jump in" early with essential concepts and applications. One of the vehicles that I found useful in structuring a short course was to start by handing out a check list. This was not merely an outline of the curriculum. It represented a collection of concepts and nomenclature that are not clearly documented, and are often misunderstood. The short-course students were thus initiated into the course by being challenged. I promised them that once they felt comfortable describing each issue, or answering each question on the list, they would be well on their way toward becoming knowledgeable in the field of digital communications. I have learned that this list of essential concepts is just as valuable for teaching full-semester courses as it is for short courses. Here then is my "check list" for digital communications. What mathematical dilemma is the cause for there being several definitions of bandwidth? (See Section 1.7.2.) Why is the ratio of bit energy-to-noise power spectral density,E b /N 0 , a natural figure-to-merit for digital communication systems? (See Section 3.1.5.) When representing timed events, what dilemma can easily result in confusing the most-significant bit (MSB) and the least-significant bit (LSB)? (See Section 3.2.3.1.) The error performance of digital signaling suffers primarily from two degradation types. a) loss in signal-to-noise ratio, b) distortion resulting in an irreducible bit-error probability. How do they differ? (See Section 3.3.2.) Often times, providing moreE b /N 0 will not mitigate the degradation due to intersymbol interference (ISI). Explain why. (See Section 3.3.2.) At what location in the system isE b /N 0 defined? (See Section 4.3.2.) Digital modulation schemes fall into one of two classes with opposite behavior characteristics. a) orthogonal signaling, b) phase/amplitude signaling. Describe the behavior of each class. (See Section 4.8.2 and 9.7.) Why do binary phase shift keying (BPSK) and quaternary phase shift keying (QPSK) manifest the same bit-error-probability relationship? Does the same hold tru

Rewards Program