did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9781905209132

Digital Signal and Image Processing Using MATLAB

by ; ;
  • ISBN13:

    9781905209132

  • ISBN10:

    1905209134

  • Format: Hardcover
  • Copyright: 2006-05-22
  • Publisher: Iste/Hermes Science Pub
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $235.00
We're Sorry.
No Options Available at This Time.

Summary

This title provides the most important theoretical aspects of Image and Signal Processing (ISP) for both deterministic and random signals. The theory is supported by exercises and computer simulations relating to real applications. More than 200 programs and functions are provided in the MATLABr language, with useful comments and guidance, to enable numerical experiments to be carried out, thus allowing readers to develop a deeper understanding of both the theoretical and practical aspects of this subject.

Author Biography

GTrard Blanchet is the author of several books on automatic control systems, digital signal processing, and computer architecture. Maurice Charbit is a researcher in the areas of statistics, speech, and image processing. They are both professors at the +cole Nationale SupTrieure des TTlTcommunications–Paris.

Table of Contents

Preface 15(4)
Notations and Abbreviations 19(4)
Introduction to MATLAB 23(1)
1 Variables 24(5)
1.1 Vectors and matrices
24(2)
1.2 Arrays
26(1)
1.3 Cells and structures
27(2)
2 Operations and functions 29(7)
2.1 Matrix operations
29(1)
2.2 Pointwise operations
30(1)
2.3 Constants and initialization
31(1)
2.4 Predefined matrices
31(1)
2.5 Mathematical functions
32(2)
2.6 Matrix functions
34(1)
2.7 Other useful functions
34(1)
2.8 Logical operators on boolean variables
35(1)
2.9 Program loops
35(1)
3 Graphically displaying results 36(3)
4 Converting numbers to character strings 39(1)
5 Input/output 39(1)
6 Program writing 40(1)
Part I Deterministic Signals 41(204)
Chapter 1 Signal Fundamentals
43(8)
1.1 The concept of signal
43(5)
1.1.1 A few signals
44(2)
1.1.2 Spectral representation of signals
46(2)
1.2 The Concept of system
48(2)
1.3 Summary
50(1)
Chapter 2 Discrete Time Signals and Sampling
51(30)
2.1 The sampling theorem
52(13)
2.1.1 Perfect reconstruction
52(12)
2.1.2 Digital-to-analog conversion
64(1)
2.2 Plotting a signal as a function of time
65(2)
2.3 Spectral representation
67(10)
2.3.1 Discrete-time Fourier transform (DTFT)
67(4)
2.3.2 Discrete Fourier transform (DFT)
71(6)
2.4 Fast Fourier transform
77(4)
Chapter 3 Spectral Observation
81(20)
3.1 Spectral accuracy and resolution
81(9)
3.1.1 Observation of a complex exponential
81(2)
3.1.2 Plotting accuracy of the DTFT
83(1)
3.1.3 Frequency resolution
84(3)
3.1.4 Effects of windowing on the resolution
87(3)
3.2 Short term Fourier transform
90(4)
3.3 Summing up
94(1)
3.4 Application examples and exercises
95(6)
3.4.1 Amplitude modulations
95(3)
3.4.2 Frequency modulation
98(3)
Chapter 4 Linear Filters
101(58)
4.1 Definitions and properties
101(5)
4.2 The z-transform
106(3)
4.2.1 Definition and properties
106(1)
4.2.2 A few examples
107(2)
4.3 Transforms and linear filtering
109(2)
4.4 Difference equations and rational TF filters
111(8)
4.4.1 Stability considerations
112(2)
4.4.2 FIR and IIR filters
114(1)
4.4.3 Causal solution and initial conditions
115(2)
4.4.4 Calculating the responses
117(1)
4.4.5 Stability and the Jury test
118(1)
4.5 Connection between gain and poles/zeros
119(10)
4.6 Minimum phase filters
129(4)
4.7 Filter design methods
133(17)
4.7.1 Going from the continuous-time filter to the discrete-time filter
133(4)
4.7.2 FIR filter design using the window method
137(10)
4.7.3 IIR filter design
147(3)
4.8 Oversampling and undersampling
150(9)
4.8.1 Oversampling
151(4)
4.8.2 Undersampling
155(4)
Chapter 5 Filter Implementation
159(28)
5.1 Filter implementation
159(14)
5.1.1 Examples of filter structures
159(5)
5.1.2 Distributing the calculation load in an FIR filter
164(1)
5.1.3 FIR block filtering
165(2)
5.1.4 FFT filtering
167(6)
5.2 Filter banks
173(14)
5.2.1 Decimation and expansion
174(3)
5.2.2 Filter banks
177(10)
Chapter 6 An Introduction to Image Processing
187(58)
6.1 Introduction
187(9)
6.1.1 Image display, color palette
187(4)
6.1.2 Importing images
191(2)
6.1.3 Arithmetical and logical operations
193(3)
6.2 Geometric transformations of an image
196(7)
6.2.1 The typical transformations
196(3)
6.2.2 Aligning images
199(4)
6.3 Frequential content of an image
203(4)
6.4 Linear filtering
207(10)
6.5 Other operations on images
217(19)
6.5.1 Undersampling
217(1)
6.5.2 Oversampling
217(3)
6.5.3 Contour detection
220(6)
6.5.4 Median filtering
226(1)
6.5.5 Maximum enhancement
227(2)
6.5.6 Image binarization
229(5)
6.5.7 Morphological filtering of binary images
234(2)
6.6 JPEG lossy compression
236(5)
6.6.1 Basic algorithm
236(1)
6.6.2 Writing the compression function
237(3)
6.6.3 Writing the decompression function
240(1)
6.7 Watermarking
241(6)
6.7.1 Spatial image watermarking
241(3)
6.7.2 Spectral image watermarking
244(1)
Part II Random Signals 245(326)
Chapter 7 Random Variables
247(26)
7.1 Random phenomena in signal processing
247(1)
7.2 Basic concepts of random variables
248(8)
7.3 Common probability distributions
256(9)
7.3.1 Uniform probability distribution on (a, b)
256(1)
7.3.2 Real Gaussian random variable
257(1)
7.3.3 Complex Gaussian random variable
258(1)
7.3.4 Generating the common probability distributions
259(3)
7.3.5 Estimating the probability density
262(1)
7.3.6 Gaussian random vectors
263(2)
7.4 Generating an r.v. with any type of p.d.
265(5)
7.5 Uniform quantization
270(3)
Chapter 8 Random Processes
273(44)
8.1 Introduction
273(1)
8.2 Wide-sense stationary processes
274(15)
8.2.1 Definitions and properties of WSS processes
275(3)
8.2.2 Spectral representation of a WSS process
278(7)
8.2.3 Sampling a WSS process
285(4)
8.3 Estimating the covariance
289(7)
8.4 Filtering formulae for WSS random processes
296(6)
8.5 MA, AR and ARMA time series
302(15)
8.5.1 Q order MA (Moving Average) process
302(3)
8.5.2 P order AR (Autoregressive) Process
305(7)
8.5.3 The Levinson algorithm
312(3)
8.5.4 AR.MA (P, Q) process
315(2)
Chapter 9 Continuous Spectra Estimation
317(24)
9.1 Non-parametric estimation of the PSD
317(12)
9.1.1 Estimation from the autocovariance function
317(3)
9.1.2 Estimation based on the periodogram
320(9)
9.2 Parametric estimation
329(12)
9.2.1 AR estimation
329(8)
9.2.2 Estimating the spectrum of an AR process
337(1)
9.2.3 The Durbin method of MA estimation
338(3)
Chapter 10 Discrete Spectra Estimation
341(48)
10.1 Estimating the amplitudes and the frequencies
341(6)
10.1.1 The case of a single complex exponential
341(2)
10.1.2 Real harmonic mixtures
343(2)
10.1.3 Complex harmonic mixtures
345(2)
10.2 Periodograms and the resolution limit
347(11)
10.3 High resolution methods
358(31)
10.3.1 Periodic signals and recursive equations
358(5)
10.3.2 The Prony method
363(3)
10.3.3 The MUSIC algorithm
366(13)
10.3.4 introduction to array processing
379(10)
Chapter 11 The Least Squares Method
389(62)
11.1 The projection theorem
389(4)
11.2 The least squares method
393(14)
11.2.1 Formulating the problem
393(1)
11.2.2 The linear model
394(1)
11.2.3 The least squares estimator
395(7)
11.2.4 The RLS algorithm (recursive least squares)
402(3)
11.2.5 Identifying the impulse response of a channel
405(2)
11.3 Linear predictions of the WSS processes
407(10)
11.3.1 Yule-Walker equations
407(1)
11.3.2 Predicting a WSS harmonic process
408(3)
11.3.3 Predicting a causal AR-P process
411(1)
11.3.4 Reflection coefficients and lattice filters
412(5)
11.4 Wiener filtering
417(13)
11.4.1 Finite impulse response solution
419(1)
11.4.2 Gradient algorithm
420(7)
11.4.3 Wiener equalization
427(3)
11.5 The LMS (least mean square) algorithm
430(16)
11.5.1 The constant step algorithm
430(9)
11.5.2 The normalized LMS algorithm
439(3)
11.5.3 Echo canceling
442(4)
11.6 Application: the Kalman algorithm
446(5)
11.6.1 The Kalman filter
446(3)
11.6.2 The vector case
449(2)
Chapter 12 Selected Topics
451(120)
12.1 Simulation of continuous-time systems
451(4)
12.1.1 Simulation by approximation
451(1)
12.1.2 Exact model simulation
452(3)
12.2 Dual Tone Multi-Frequency (DTMF)
455(6)
12.3 Speech processing
461(10)
12.3.1 A speech signal model
461(7)
12.3.2 Compressing a speech signal
468(3)
12.4 DTW
471(3)
12.5 Modifying the duration of an audio signal
474(4)
12.5.1 PSOLA
475(2)
12.5.2 Phase vocoder
477(1)
12.6 Quantization noise shaping
478(4)
12.7 Elimination of the background noise in audio
482(2)
12.8 Eliminating the impulse noise
484(6)
12.8.1 The signal model
484(1)
12.8.2 Click detection
485(3)
12.8.3 Restoration
488(2)
12.9 Tracking the cardiac rhythm of the fetus
490(11)
12.9.1 Objectives
490(1)
12.9.2 Separating the EKG signals
491(3)
12.9.3 Estimating cardiac rhythms
494(7)
12.10 Extracting the contour of a coin
501(2)
12.11 Principal component analysis (PCA)
503(11)
12.11.1 Determining the principal components
503(4)
12.11.2 2-Dimension PCA
507(2)
12.11.3 Linear discriminant analysis (LDA)
509(5)
12.12 Separating an instantaneous mixture
514(2)
12.13 Matched filters in radar telemetry
516(2)
12.14 Kalman filtering
518(6)
12.15 Compression
524(14)
12.15.1 Scalar quantization
524(2)
12.15.2 Vector quantization
526(12)
12.16 Digital communications
538(24)
12.16.1 Introduction
538(3)
12.16.2 8-phase shift keying (PSK)
541(2)
12.16.3 PAM modulation
543(2)
12.16.4 Spectrum of a digital signal
545(4)
12.16.5 The Nyquist criterion in digital communications
549(6)
12.16.6 The eye pattern
555(1)
12.16.7 PAM modulation on the Nyquist channel
556(6)
12.17 Linear equalization and the Viterbi algorithm
562(11)
12.17.1 Linear equalization
564(2)
12.17.2 The Viterbi algorithm
566(5)
Part III Hints and Solutions 571(156)
Chapter 13 Hints and Solutions
573(154)
H1 Signal fundamentals
573(1)
H2 Discrete time signals and sampling
573(6)
H3 Spectral observation
579(11)
H4 Linear filters
590(20)
H5 Filter implementation
610(4)
H6 An Introduction to image processing
614(27)
H7 Random variables
641(5)
H8 Random processes
646(10)
H9 Continuous spectra estimation
656(5)
H10 Discrete spectra estimation
661(7)
H11 The least squares method
668(8)
H12 Selected topics
676(51)
Chapter 14 Appendix 727(12)
A1 Fourier transform
727(1)
A2 Discrete time Fourier transform
728(1)
A3 Discrete Fourier transform
729(1)
A4 z-Transform
730(2)
A5 Jury criterion
732(2)
A6 FFT filtering algorithms revisited
734(5)
Bibliography 739(8)
Index 747

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program