did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780849314889

DNA Fingerprinting in Plants: Principles, Methods, and Applications, Second Edition

by ;
  • ISBN13:

    9780849314889

  • ISBN10:

    0849314887

  • Edition: 2nd
  • Format: Nonspecific Binding
  • Copyright: 2005-02-28
  • Publisher: CRC Press
  • Purchase Benefits
List Price: $135.00 Save up to $36.00
  • Digital
    $99.00
    Add to Cart

    DURATION
    PRICE

Supplemental Materials

What is included with this book?

Summary

Given the explosive development of new molecular marker techniques over the last decade, newcomers and experts alike in the field of DNA fingerprinting will find an easy-to-follow guide to the multitude of techniques available in DNA Fingerprinting in Plants: Principles, Methods, and Applications, Second Edition. Along with step-by-step annotated protocols, the authors fully discuss the technical aspects and modifications of existing techniques, the influence of reaction components and conditions, and the analysis of the results.This second edition has been completely revised to address the exponential changes in the field since the first edition, focusing on PCR-based techniques but also including more sophisticated ones. The authors include numerous case studies to illustrate applications of the methods, more than 1600 references to the literature, and descriptions of reagent formulation, equipment, and computer programs used for evaluating molecular marker data. They compare the various methods, including the costs and benefits of each, helping readers determine which is best suited to a particular application.The well-rounded, cross-referenced, and unified nature of this book makes it intrinsically easier to follow than the edited, multi-authored books currently available. It is an absolute necessity on the lab bench of anyone involved in plant research, DNA profiling, and molecular markers.

Table of Contents

Chapter 1 Repetitive DNA: An Important Source of Variation in Eukaryotic Genomes
1.1 Categories of DNA Sequence Mutations
2(2)
1.2 Tandem-Repetitive DNA: The Biology of Mini- and Microsatellites
4(10)
1.2.1 Minisatellites
5(2)
1.2.1.1 Chromosomal Localization and Association with Other Repeats
6(1)
1.2.1.2 Mutability and Evolution
6(1)
1.2.1.3 Minisatellites in Organellar Genomes
7(1)
1.2.1.4 Potential Functions of Minisatellites
7(1)
1.2.1.5 Minisatellites as Molecular Markers
7(1)
1.2.2 Microsatellites
7(7)
1.2.2.1 Categories of Microsatellites
8(2)
1.2.2.2 Chromosomal Localization and Association with Other Repeats
10(1)
1.2.2.3 Mutability and Evolution
11(2)
1.2.2.4 Microsatellites in Organellar Genomes
13(1)
1.2.2.5 Potential Functions of Microsatellites
13(1)
1.2.2.6 Microsatellites as Molecular Markers
14(1)
1.3 Transposable Elements
14(7)
1.3.1 Class I Transposons
14(3)
1.3.2 Class II Transposons
17(1)
1.3.3 Unclassified Transposons
18(1)
1.3.4 Transposons and Genome Evolution
18(1)
1.3.5 Transposons as Molecular Markers
19(2)
Chapter 2 Detecting DNA Variation by Molecular Markers
2.1 Properties of Molecular Markers
21(1)
2.2 Traditional Marker Systems
22(6)
2.2.1 Protein Markers and Allozymes
22(1)
2.2.2 DNA Sequencing
23(1)
2.2.3 Restriction Fragment Length Polymorphism (RFLP) Analysis
24(4)
2.2.3.1 Nuclear RFLPs and DNA Fingerprinting
25(1)
2.2.3.2 RFLPs in Chloroplast and Mitochondrial DNA
26(2)
2.3 The PCR Generation: Molecular Markers Based on In Vitro DNA Amplification
28(47)
2.3.1 Principle of the PCR
29(2)
2.3.2 Cleaved Amplified Polymorphic Sequences
31(1)
2.3.3 PCR with Arbitrary Primers: RAPD and Its Variants
32(9)
2.3.3.1 The Molecular Basis of RAPDs: Significance of Mispriming and Competition among Priming Sites
33(4)
2.3.3.2 Properties of RAPD Markers
37(1)
2.3.3.3 Advantages, Limitations, and Applications of RAPD Markers
38(1)
2.3.3.4 Sequence-Characterized Amplified Regions
39(1)
2.3.3.5 Expression Profiling with Arbitrary Primers
40(1)
2.3.4 Microsatellites
41(4)
2.3.4.1 Nuclear Microsatellite Markers
42(2)
2.3.4.2 Chloroplast Microsatellite Markers
44(1)
2.3.5 Inter-Repeat PCR
45(9)
2.3.5.1 From A/u Repeats to Zinc Fingers: Repetitive DNA as a Primer Target 4.
.5
2.3.5.2 Primers Directed Toward Minisatellites
46(1)
2.3.5.3 Primers Directed Toward Microsatellites
47(5)
2.3.5.4 Primers Directed Toward Interspersed Repeats
52(2)
2.3.6 DNA Profiling of Genic Regions: RGAP, SRAP, and TRAP
54(2)
2.3.7 Hybridization of Microsatellites to RAPD and MP-PCR Products
56(2)
2.3.8 AFLP Analysis and Its Variants
58(12)
2.3.8.1 The AFLP Technique: Principle, Advantages, and Limitations
58(4)
2.3.8.2 S-SAP Analysis
62(2)
2.3.8.3 Selective Amplification of Microsatellite Polymorphic Loci
64(2)
2.3.8.4 Microsatellite-AFLP
66(1)
2.3.8.5 Methylation-Sensitive Amplified Polymorphisms
66(2)
2.3.8.6 AFLP-Based Expression Profiling
68(1)
2.3.8.7 Miscellaneous AFLP Variants
69(1)
2.3.9 Single-Strand Conformation Polymorphism Analysis and Related Techniques
70(2)
2.3.10 Miscellaneous Techniques
72(10)
2.3.10.1 Minisatellite Variant Repeat Mapping
72(1)
2.3.10.2 Two-Dimensional DNA Typing Methods
72(1)
2.3.10.3 Single-Nucleotide Polymorphisms
73(2)
Chapter 3 Laboratory Equipment
3.1 Incubators
75(1)
3.2 Plant and Plant Cell Growth Equipment
76(1)
3.3 Sterilization
76(1)
3.4 Water Purification
76(1)
3.5 Centrifuges
76(1)
3.6 Refrigeration and Material Storage
77(1)
3.7 Safety
77(1)
3.8 Pipets
77(1)
3.9 Supplies (Glassware and Plasticware)
78(1)
3.10 DNA Detection and Quantitation
78(1)
3.11 Electrophoresis Equipment
78(1)
3.12 Documentation of Results
79(1)
3.13 General Laboratory Equipment
79(2)
Chapter 4 Methodology
4.1 Safety Precautions
81(1)
4.2 Isolation, Purification, and Quantitation of Plant DNA
82(25)
4.2.1 Collection and Preservation of Plant Tissue in the Field
82(6)
4.2.1.1 Starting Material
83(1)
4.2.1.2 Cooling, Freezing, and Lyophilization
84(1)
4.2.1.3 Chemical Preservation
84(1)
4.2.1.4 Drying
85(2)
4.2.1.5 Preparing Herbarium Vouchers
87(1)
4.2.1.6 Contamination
87(1)
4.2.2 Plant DNA Extraction: General Considerations
88(12)
4.2.2.1 Cell and Tissue Disruption
89(1)
4.2.2.2 Lysis of Membranes and Organelles
90(1)
4.2.2.3 Removal of Proteins and RNA
91(1)
4.2.2.4 Removal of Polyphenols and Other Secondary Compounds
91(1)
4.2.2.5 Removal of Polysaccharides
92(1)
4.2.2.6 Removal of Organic Acids and Endogenous DNase Activities
92(1)
4.2.2.7 General Strategies to Remove Cytoplasmic Contaminants
93(2)
4.2.2.8 Herbarium Specimens and Other Difficult Substrates
95(2)
4.2.2.9 High-Throughput Procedures
97(1)
4.2.2.10 Commercial Kits
98(1)
4.2.2.11 Megabase DNA Isolation Protocols
99(1)
4.2.2.12 Choice of Procedure and Costs
99(1)
4.2.2.13 Storage of DNA Solutions
100(1)
4.2.3 CTAB Protocol I
100(2)
4.2.4 CTAB Protocol II
102(1)
4.2.5 SDS-Potassium Acetate Protocol
103(1)
4.2.6 DNA Preparation via Nuclei
104(1)
4.2.7 Quantitation of DNA
105(2)
4.2.7.1 Ethidium Bromide Staining
106(1)
4.2.7.2 Spectrophotometry
106(1)
4.3 Basic Molecular Techniques
107(31)
4.3.1 Restriction of DNA
107(2)
4.3.2 Polymerase Chain Reaction
109(5)
4.3.2.1 Primers
110(1)
4.3.2.2 DNA Polymerase
110(1)
4.3.2.3 Thermocycler and Temperature Regimen
110(2)
4.3.2.4 Template Quality
112(1)
4.3.2.5 Yield and Specificity
112(1)
4.3.2.6 Contamination
113(1)
4.3.3 DNA Sequencing
114(1)
4.3.4 Agarose Gel Electrophoresis
115(3)
4.3.5 PAA Gel Electrophoresis
118(4)
4.3.5.1 Nondenaturing PAA Gels
118(2)
4.3.5.2 Sequencing Gels
120(2)
4.3.6 Detection of DNA in Gels
122(2)
4.3.6.1 Ethidium Bromide Staining
123(1)
4.3.6.2 Silver Staining
123(1)
4.3.7 Gel Drying
124(1)
4.3.8 Southern Blotting
125(2)
4.3.9 Generation of Radiolabeled Probes, Primers, and PCR Products
127(6)
4.3.9.1 End-Labeling of Oligonucleotides
128(1)
4.3.9.2 Nick Translation
129(1)
4.3.9.3 Random Priming
130(1)
4.3.9.4 Removal of Unincorporated dNTPs
131(2)
4.3.9.5 Nonradioactive Labeling Procedures
133(1)
4.3.10 Blot Hybridization
133(3)
4.3.10.1 Oligonucleotide Probes
134(1)
4.3.10.2 Probes Generated by Nick Translation or Random Priming
135(1)
4.3.11 Signal Detection
136(2)
4.3.11.1 Autoradiography
136(1)
4.3.11.2 Phosphorimaging
137(1)
4.3.11.3 Automated DNA Sequencers
137(1)
4.4 PCR with Arbitrary Primers
138(9)
4.4.1 Standard RAPD Protocol
138(1)
4.4.2 Influence of Reaction Conditions and Components
139(7)
4.4.2.1 Primers
139(3)
4.4.2.2 Polymerase
142(1)
4.4.2.3 Thermocycler and Temperature Regimen
142(1)
4.4.2.4 Template Concentration and Quality
143(1)
4.4.2.5 Magnesium Concentration
144(1)
4.4.2.6 PCR Additives
144(1)
4.4.2.7 Reproducibility and Quality of Banding Patterns
145(1)
4.4.3 Modifications
146(1)
4.5 Microsatellite-Primed PCR
147(5)
4.5.1 Standard Protocol of Microsatellite-Primed PCR
148(1)
4.5.2 Influence of Reaction Conditions and Components
149(1)
4.5.3 Modifications
150(2)
4.5.3.1 Anchored vs. Unanchored Primers
150(2)
4.5.3.2 Fragment Separation and Detection
152(1)
4.6 PCR and Hybridization: Combinatory Techniques
152(2)
4.6.1 Assessing the Genomic Copy Number of PCR Amplicons
153(1)
4.6.2 Testing the Homology of Comigrating Bands
153(1)
4.6.3 Random Amplified Microsatellite Polymorphism (RAMPO)
154(1)
4.7 Amplified Fragment Length Polymorphism
154(16)
4.7.1 Standard AFLP Protocol Using Radioisotopes
155(4)
4.7.1.1 Step 1: Restriction of Template DNA and Ligation to Specific Adapters
155(1)
4.7.1.2 Step 2: Preamplification
156(2)
4.7.1.3 Step 3: Selective Amplification
158(1)
4.7.1.4 Step 4: AFLP Fragment Separation and Autoradiography
159(1)
4.7.2 AFLP Protocol Using Fluorescence-Labeled Primers
159(3)
4.7.2.1 Steps 1 and 2
160(1)
4.7.2.2 Step 3: Selective Amplification
160(1)
4.7.2.3 Step 4: AFLP Fragment Separation and Fluorescence Detection
161(1)
4.7.3 Selective Amplification of Microsatellite Polymorphic Loci and Microsatellite AFLP Protocols
162(1)
4.7.4 Technical Aspects and Modifications
162(7)
4.7.4.1 Restriction and Ligation of Template DNA
162(3)
4.7.4.2 Preamplification and Selective Amplification
165(2)
4.7.4.3 Fragment Separation and Detection
167(2)
4.7.5 Robustness and Reproducibility
169(1)
4.8 Generation and Analysis of Microsatellite Markers
170(32)
4.8.1 Microsatellite Analysis Using Radioisotopes
171(3)
4.8.2 Microsatellite Analysis Using Fluorochromes
174(2)
4.8.3 Technical Aspects and Modifications
176(2)
4.8.3.1 Fragment Separation and Visualization
176(1)
4.8.3.2 Stutter Bands and Other PCR Artefacts
177(1)
4.8.4 Generating Microsatellite Markers Without Cloning
178(5)
4.8.4.1 Literature Screening
178(1)
4.8.4.2 Database Mining
179(1)
4.8.4.3 Marker Transferability between Species: Nuclear Microsatellites
180(2)
4.8.4.4 Marker Transferability between Species: Chloroplast Microsatellites
182(1)
4.8.5 Microsatellite Cloning
183(19)
4.8.5.1 Conventional Libraries
183(1)
4.8.5.2 Microsatellite Enrichment Based on Primer Extension
184(1)
4.8.5.3 Microsatellite Enrichment Based on Selective Hybridization
185(2)
4.8.5.4 Microsatellites from Cloned PCR Products
187(1)
4.8.5.5 Miscellaneous Enrichment Procedures
188(1)
4.8.5.6 Protocol: Microsatellite Enrichment Cloning Using Magnetic Beads
189(10)
4.8.5.7 Primer Design
199(1)
4.8.5.8 Factors Affecting the Efficiency of Microsatellite Cloning
200(2)
4.8.5.9 Commercial Development of Microsatellite Libraries
202(1)
4.9 CAPS Analysis of cpDNA and mtDNA
202(5)
4.9.1 Standard CAPS Protocol
203(2)
4.9.2 Choice of CAPS Primers
205(2)
Chapter 5 Evaluation of Molecular Marker Data
5.1 Robustness and Reproducibility
207(3)
5.1.1 Reliability
208(1)
5.1.2 Band Homology
208(1)
5.1.3 Band Linkage and Neutrality
209(1)
5.2 Fragment Sizing and Matching
210(3)
5.2.1 General Precautions
211(1)
5.2.2 Equipment
212(1)
5.3 Multilocus vs. Single-Locus Approaches
213(1)
5.3.1 Multilocus Markers
213(1)
5.3.2 Single-Locus Markers and Polyploids
213(1)
5.4 Band Sharing and Genetic Distances
214(5)
5.4.1 Coefficients of Similarity
214(1)
5.4.2 Dissimilarity Coefficients and Genetic Distances
215(1)
5.4.3 Identity and Uniqueness
215(2)
5.4.4 Clonal Structure
217(2)
5.5 Ordination, Clustering, and Dendrograms
219(4)
5.5.1 Ordination Techniques
219(2)
5.5.2 Construction of Dendrograms
221(2)
5.6 Population Genetic Analysis
223(9)
5.6.1 Measures of Variation
223(3)
5.6.2 Genetic Differentiation between Populations
226(3)
5.6.2.1 F Statistics and Related Measures
226(2)
5.6.2.2 Analysis of Variance
228(1)
5.6.2.3 Shannon's Index
228(1)
5.6.3 Genetic Distances between Populations
229(1)
5.6.4 Inbreeding Coefficient and Mating Systems
229(1)
5.6.5 Estimation of Relatedness and Paternity Testing
230(1)
5.6.6 Migration and Hybridization
231(1)
5.6.7 Gene Flow, Isolation-by-Distance, and Spatial Structure
232(1)
5.7 Phylogeography and Nested Clade Analysis
232(1)
5.8 Statistical Testing of Hypotheses: Analytical and Computational Methods
233(2)
Chapter 6 Applications of DNA Fingerprinting in Plant Sciences
6.1 A Brief History of DNA Fingerprinting
235(2)
6.1.1 Minisatellite and Oligonucleotide DNA Probes Detect Genetic Variation
235(1)
6.1.2 PCR-Based Methods Enter the Stage
236(1)
6.1.3 Microsatellite DNA Analyses Yield Codominant Markers
237(1)
6.1.4 Universal Organellar DNA Primers Produce Uniparental Markers
237(1)
6.2 Genotype Identification
237(9)
6.2.1 Individual-Specific DNA Fingerprints
238(2)
6.2.2 Cultivar Identification
240(3)
6.2.2.1 Patenting and Protecting Plant Varieties
240(1)
6.2.2.2 Choice of DNA Marker Method for Cultivar Identification
241(1)
6.2.2.3 Propagation and Reproduction of Crop Species
242(1)
6.2.3 In Vitro-Propagated Plant Material and Somaclonal Variation
243(2)
6.2.4 Sports and Other Mutants
245(1)
6.3 Genetic Diversity
246(18)
6.3.1 Variation and Relatedness among Cultivars
247(1)
6.3.2 Analysis of Population Genetic Diversity and Its Distribution
248(9)
6.3.2.1 Choice of Molecular Marker Method for Population Genetics
249(1)
6.3.2.2 Influence of the Breeding System on Genetic Diversity
250(1)
6.3.2.3 Clones and Ramets
251(1)
6.3.2.4 Estimating Gene Flow via Pollen and Seeds
252(3)
6.3.2.5 Effects of Habitat Fragmentation
255(2)
6.3.3 Hybridization and Introgression
257(4)
6.3.3.1 Hybridization in Wild Populations
257(2)
6.3.3.2 Hybrid Distances and Diagnostic Markers
259(1)
6.3.3.3 Hybridization between Wild and Cultivated Plants
259(1)
6.3.3.4 Hybridization in Gymnosperms
260(1)
6.3.3.5 Polyploidy
260(1)
6.3.4 Plant Conservation
261(1)
6.3.5 Germplasm Characterization and Preservation
262(2)
6.3.5.1 Gene Banks
263(1)
6.3.5.2 Core Collections
264(1)
6.4 Plant Taxonomy and Systematics
264(6)
6.4.1 Taxonomic Relationships Revealed by Multilocus DNA Methods
264(4)
6.4.2 Microsatellite Markers in Taxonomic Studies
268(1)
6.4.3 Taxonomic Consequences from DNA Profiling Data
269(1)
6.5 Phylogeography
270(7)
6.5.1 Phylogeography Based on cpDNA
270(4)
6.5.1.1 Postglacial Recolonization of Central and Northern Europe
271(1)
6.5.1.2 Phylogeographic Case Studies in Tropical Trees
271(1)
6.5.1.3 Phylogeographic Case Studies in Gymnosperms
272(2)
6.5.2 Phylogeography Based on Nuclear Genes
274(3)
Chapter 7 Linkage Analysis and Genetic Maps
7.1 Generating High-Density Genetic Maps
277(10)
7.1.1 Selection of Parent Plants
277(1)
7.1.2 Mapping Population
278(1)
7.1.3 Linkage Analysis
279(1)
7.1.4 The Genetic Map
279(6)
7.1.5 Cytogenetic Maps
285(1)
7.1.6 Genetic vs. Physical Maps
285(2)
7.2 Synteny: The Comparative Analysis of Genomes
287(1)
7.3 Marker-Assisted Selection
288(1)
7.4 Molecular Markers and Positional Cloning
289(4)
Chapter 8 Which Marker for What Purpose: A Comparison
8.1 Morphological Characters and Allozymes vs. DNA Markers
293(2)
8.2 Different Kinds of DNA Markers
295(3)
8.2.1 Discriminatory Power
295(1)
8.2.2 Genetic Distances
296(1)
8.2.3 Within- and Among-Population Variation
297(1)
8.2.4 Gene Tagging and Genetic Linkage Mapping
297(1)
8.2.5 Costs
298(1)
8.3 Conclusions
298(3)
Chapter 9 Future Prospects: SNiPs and Chips for DNA and RNA Profiling
9.1 Single-Nucleotide Polymorphisms
301(4)
9.1.1 What Is a SNIP?
301(1)
9.1.2 SNP Discovery
302(1)
9.1.3 SNP Genotyping
303(1)
9.1.4 SNPs in Plant Genomes
304(1)
9.1.5 Perspective
305(1)
9.2 DNA Microarrays
305(3)
9.3 Expression Profiling and Expression Markers
308(3)
Appendix 1 Plant DNA Isolation Protocols 311(12)
Appendix 2 Commercial Companies 323(6)
Appendix 3 Computer Programs Dealing with the Evaluation of DNA Sequence Variation and Molecular Marker Data 329(8)
Appendix 4 Web-Pages of Interest 337(2)
References 339(88)
Index 427

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program