did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9781118434413

Elementary Linear Algebra

by ;
  • ISBN13:

    9781118434413

  • ISBN10:

    1118434412

  • Edition: 11th
  • Format: Hardcover
  • Copyright: 2013-11-04
  • Publisher: John Wiley & Sons Inc
  • View Upgraded Edition

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $207.99 Save up to $150.61
  • Buy Used
    $155.99
    Add to Cart Free Shipping Icon Free Shipping

    USUALLY SHIPS IN 2-4 BUSINESS DAYS

Supplemental Materials

What is included with this book?

Summary

Elementary Linear Algebra: Applications Version, 11th Edition gives an elementary treatment of linear algebra that is suitable for a first course for undergraduate students.  The aim is to present the fundamentals of linear algebra in the clearest possible way; pedagogy is the main consideration.  Calculus is not a prerequisite, but there are clearly labeled exercises and examples (which can be omitted without loss of continuity) for students who have studied calculus.

Author Biography

Howard Anton obtained his B.A. from Lehigh University, his M.A. from the University of Illinois, and his Ph.D. from the Polytechnic Institute of Brooklyn, all in mathematics. He worked in the manned space program at Cape Canaveral in the early 1960's. In 1968 he became a research professor of mathematics at Drexel University in Philadelphia, where he taught and did mathematical research for 15 years. In 1983 he left Drexel as a Professor Emeritus of Mathematics to become a full-time writer of mathematical textbooks.

Table of Contents

C H A P T E R 1 Systems of Linear Equations and Matrices

1.1 Introduction to Systems of Linear Equations

1.2 Gaussian Elimination

1.3 Matrices and Matrix Operations

1.4 Inverses; Algebraic Properties of Matrices

1.5 Elementary Matrices and a Method for Finding A−1

1.6 More on Linear Systems and Invertible Matrices

1.7 Diagonal, Triangular, and Symmetric Matrices

1.8 Matrix Transformations

1.9 Applications of Linear Systems

• Network Analysis (Traffic Flow)

• Electrical Circuits

• Balancing Chemical Equations

• Polynomial Interpolation

1.10 Application: Leontief Input-Output Models

C H A P T E R 2 Determinants

2.1 Determinants by Cofactor Expansion

2.2 Evaluating Determinants by Row Reduction

2.3 Properties of Determinants; Cramer’s Rule

C H A P T E R 3 Euclidean Vector Spaces

3.1 Vectors in 2-Space, 3-Space, and n-Space

3.2 Norm, Dot Product, and Distance in Rn

3.3 Orthogonality

3.4 The Geometry of Linear Systems

3.5 Cross Product

C H A P T E R 4 General Vector Spaces

4.1 Real Vector Spaces

4.2 Subspaces

4.3 Linear Independence

4.4 Coordinates and Basis

4.5 Dimension

4.6 Change of Basis

4.7 Row Space, Column Space, and Null Space

4.8 Rank, Nullity, and the Fundamental Matrix Spaces

4.9 Basic Matrix Transformations in R2 and R3

4.10 Properties of Matrix Transformations

4.11 Application: Geometry of Matrix Operators on R2

C H A P T E R 5 Eigenvalues and Eigenvectors

5.1 Eigenvalues and Eigenvectors

5.2 Diagonalization

5.3 Complex Vector Spaces

5.4 Application: Differential Equations

5.5 Application: Dynamical Systems and Markov Chains

C H A P T E R 6 Inner Product Spaces

6.1 Inner Products

6.2 Angle and Orthogonality in Inner Product Spaces

6.3 Gram–Schmidt Process; QR-Decomposition

6.4 Best Approximation; Least Squares

6.5 Application: Mathematical Modeling Using Least Squares

6.6 Application: Function Approximation; Fourier Series

C H A P T E R 7 Diagonalization and Quadratic Forms

7.1 Orthogonal Matrices

7.2 Orthogonal Diagonalization

7.3 Quadratic Forms

7.4 Optimization Using Quadratic Forms

7.5 Hermitian, Unitary, and Normal Matrices

C H A P T E R 8 General Linear Transformations

8.1 General Linear Transformation

8.2 Compositions and Inverse Transformations

8.3 Isomorphism

8.4 Matrices for General Linear Transformations

8.5 Similarity

C H A P T E R 9 Numerical Methods

9.1 LU-Decompositions

9.2 The Power Method

9.3 Comparison of Procedures for Solving Linear Systems

9.4 Singular Value Decomposition

9.5 Application: Data Compression Using Singular Value Decomposition

C H A PT E R 10 Applications of Linear Algebra

10.1 Constructing Curves and Surfaces Through Specified Points

10.2 The Earliest Applications of Linear Algebra

10.3 Cubic Spline Interpolation

10.4 Markov Chains

10.5 Graph Theory

10.6 Games of Strategy

10.7 Leontief Economic Models

10.8 Forest Management

10.9 Computer Graphics

10.10 Equilibrium Temperature Distributions

10.11 Computed Tomography

10.12 Fractals

10.13 Chaos

10.14 Cryptography

10.15 Genetics

10.16 Age-Specific Population Growth

10.17 Harvesting of Animal Populations

10.18 A Least Squares Model for Human Hearing

10.19 Warps and Morphs

10.20 Internet Search Engines

A P P E N D I X A Working with Proofs

A P P E N D I X B Complex Numbers

Answers to Exercises

Index

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program