(0) items

Engineering Mechanics : Statics,9780132915540
This item qualifies for


Your order must be $59 or more, you must select US Postal Service Shipping as your shipping preference, and the "Group my items into as few shipments as possible" option when you place your order.

Bulk sales, PO's, Marketplace Items, eBooks, Apparel, and DVDs not included.

Engineering Mechanics : Statics



Pub. Date:
Prentice Hall
List Price: $209.99

Rent Textbook



Only two copies
in stock at this price.

Buy Used Textbook

In Stock Usually Ships in 24 Hours.

Buy New Textbook

Currently Available, Usually Ships in 24-48 Hours


Downloadable Offline Access
More New and Used
from Private Sellers
Starting at $52.50

Questions About This Book?

Why should I rent this book?
Renting is easy, fast, and cheap! Renting from can save you hundreds of dollars compared to the cost of new or used books each semester. At the end of the semester, simply ship the book back to us with a free UPS shipping label! No need to worry about selling it back.
How do rental returns work?
Returning books is as easy as possible. As your rental due date approaches, we will email you several courtesy reminders. When you are ready to return, you can print a free UPS shipping label from our website at any time. Then, just return the book to your UPS driver or any staffed UPS location. You can even use the same box we shipped it in!
What version or edition is this?
This is the 13th edition with a publication date of 1/12/2012.
What is included with this book?
  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any CDs, lab manuals, study guides, etc.
  • The Used copy of this book is not guaranteed to inclue any supplemental materials. Typically, only the book itself is included.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. You may receive a brand new copy, but typically, only the book itself.


In his revision of Engineering Mechanics, R.C. Hibbeler empowers students to succeed in the whole learning experience. Hibbeler achieves this by calling on his everyday classroom experience and his knowledge of how students learn inside and outside of lecture. This text is ideal for civil and mechanical engineering professionals. MasteringEngineering, the most technologically advanced online tutorial and homework system available, can be packaged with this edition.

Author Biography

R.C. Hibbeler graduated from the University of Illinois at Urbana with a BS in Civil Engineering (major in Structures) and an MS in Nuclear Engineering. He obtained his PhD in Theoretical and Applied Mechanics from Northwestern University.

Hibbeler’s professional experience includes postdoctoral work in reactor safety and analysis at Argonne National Laboratory, and structural work at Chicago Bridge and Iron, as well as Sargent and Lundy in Tucson. He has practiced engineering in Ohio, New York, and Louisiana.

Hibbeler currently teaches at the University of Louisiana, Lafayette. In the past he has taught at the University of Illinois at Urbana, Youngstown State University, Illinois Institute of Technology, and Union College.

Table of Contents

1 General Principles 3        

Chapter Objectives 3

1.1 Mechanics 3

1.2 Fundamental Concepts 4

1.3 Units of Measurement 7

1.4 T he International System of Units 9

1.5 Numerical Calculations 10

1.6 General Procedure for Analysis 12


2 Force Vectors 17

Chapter Objectives 17

2.1 Scalars and Vectors 17

2.2 Vector Operations 18

2.3 Vector Addition of Forces 20

2.4 Addition of a System of Coplanar Forces 32

2.5 C artesian Vectors 43

2.6 Addition of Cartesian Vectors 46

2.7 Position Vectors 56

2.8 Force Vector Directed Along a Line 59

2.9 Dot Product 69


3 Equilibrium of a Particle 85

Chapter Objectives 85

3.1 Condition for the Equilibrium of a Particle 85

3.2 The Free-Body Diagram 86

3.3 Coplanar Force Systems 89

3.4 Three-Dimensional Force Systems 103


4 Force System Resultants 117

Chapter Objectives 117

4.1 Moment of a Force–Scalar Formulation 117

4.2 Cross Product 121

4.3 Moment of a Force–Vector Formulation 124

4.4 Principle of Moments 128

4.5 Moment of a Force about a Specified Axis 139

4.6 Moment of a Couple 148

4.7 Simplification of a Force and Couple System 160

4.8 Further Simplification of a Force and Couple System 170

4.9 Reduction of a Simple Distributed Loading 183


5 Equilibrium of a Rigid Body 199

Chapter Objectives 199

5.1 Conditions for Rigid-Body Equilibrium 199

5.2 Free-Body Diagrams 201

5.3 Equations of Equilibrium 214

5.4 Two- and Three-Force Members 224

5.5 Free-Body Diagrams 237

5.6 Equations of Equilibrium 242

5.7 Constraints and Statical Determinacy 243


6 Structural Analysis 263

Chapter Objectives 263

6.1 Simple Trusses 263

6.2 The Method of Joints 266

6.3 Zero-Force Members 272

6.4 The Method of Sections 280

6.5 Space Trusses 290

6.6 Frames and Machines 294


7 Internal Forces 331

Chapter Objectives 331

7.1 Internal Loadings Developed in Structural Members 331

7.2 Shear and Moment Equations and Diagrams 347

7.3 Relations between Distributed Load, Shear, and Moment 356

7.4 Cables 367


8 Friction 389

Chapter Objectives 389

8.1 Characteristics of Dry Friction 389

8.2 Problems Involving Dry Friction 394

8.3 Wedges 416

8.4 Frictional Forces on Screws 418

8.5 Frictional Forces on Flat Belts 425

8.6 Frictional Forces on Collar Bearings, Pivot Bearings, and Disks 433

8.7 Frictional Forces on Journal Bearings 436

8.8 Rolling Resistance 438


9 Center of Gravity and Centroid 451

Chapter Objectives 451

9.1 Center of Gravity, Center of Mass, and the Centroid of a Body 451

9.2 Composite Bodies 474

9.3 Theorems of Pappus and Guldinus 488

9.4 Resultant of a General Distributed Loading 497

9.5 Fluid Pressure 498


10 Moments of Inertia 515        

Chapter Objectives 515

10.1 Definition of Moments of Inertia for Areas 515

10.2 Parallel-Axis Theorem for an Area 516

10.3 Radius of Gyration of an Area 517

10.4 Moments of Inertia for Composite Areas 526

10.5 Product of Inertia for an Area 534

10.6 Moments of Inertia for an Area about Inclined Axes 538

10.7 Mohr’s Circle for Moments of Inertia 541

10.8 Mass Moment of Inertia 549


11 Virtual Work 567

Chapter Objectives 567

11.1 Definition of Work 567

11.2 Principle of Virtual Work 569

11.3 Principle of Virtual Work for a System of Connected Rigid Bodies 571

11.4 Conservative Forces 583

11.5 Potential Energy 584

11.6 Potential-Energy Criterion for Equilibrium 586

11.7 Stability of Equilibrium Configuration 587 Appendix


A. Mathematical Review and Expressions

Fundamental Problems Partial Solutions and Answers

Answers to Selected Problems


Please wait while the item is added to your cart...