did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780415267144

Engineering Noise Control

by ;
  • ISBN13:

    9780415267144

  • ISBN10:

    0415267145

  • Edition: 3rd
  • Format: Paperback
  • Copyright: 2003-09-29
  • Publisher: Spon Press
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $64.95

Summary

The third edition ofEngineering Noise Controlhas been thoroughly revised, updated and extended. Each chapter contains new material, much of which is not available elsewhere. The result is a comprehensive discussion of the theoretical principles and concepts of acoustics and noise control, a detailed discussion of the hearing mechanism, noise measuring instrumentation and techniques, noise criteria, sound source characterization and emission, outdoor sound propagation, sound in rooms, sound transmission through partitions, enclosure design, dissipative and reactive mufflers, vibration isolation, equipment sound power emission calculations and active noise cancellation. The book is an excellent text for advanced undergraduate or graduate students of acoustic and noise control, and it also contains the necessary information and prediction techniques that make it an invaluable resource for the practitioner.

Author Biography

David Bies is and Honorary Research Fellow at the University of Adelaide's Department of Mechanical Engineering. He has previously worked as a senior consultant in industry.

Table of Contents

Preface xvii
Acknowledgements xx
CHAPTER ONE Fundamentals and basic terminology 1(53)
1.1 INTRODUCTION
1(2)
1.2 NOISE-CONTROL STRATEGIES
3(9)
1.2.1 Sound Source Modification
5(3)
1.2.2 Control of the Transmission Path
8(1)
1.2.3 Modification of the Receiver
8(1)
1.2.4 Existing Facilities
8(2)
1.2.5 Facilities in the Design Stage
10(1)
1.2.6 Airborne Versus Structure-borne Noise
11(1)
1.3 ACOUSTIC FIELD VARIABLES AND THE WAVE EQUATION
12(8)
1.3.1 Variables
12(1)
1.3.2 The Acoustic Field
13(1)
1.3.3 Magnitudes
14(1)
1.3.4 The Speed of Sound
15(3)
1.3.5 Dispersion
18(1)
1.3.6 Acoustic Potential Function and the Wave Equation
19(1)
1.4 PLANE AND SPHERICAL WAVES
20(9)
1.4.1 Plane Wave Propagation
20(4)
1.4.2 Spherical Wave Propagation
24(3)
1.4.3 Wave Summation
27(1)
1.4.4 Plane Standing Waves
28(1)
1.4.5 Spherical Standing Waves
29(1)
1.5 MEAN SQUARE QUANTITIES
29(1)
1.6 ENERGY DENSITY
30(1)
1.7 SOUND INTENSITY
31(5)
1.7.1 Definitions
32(2)
1.7.2 Plane Wave and Far Field Intensity
34(1)
1.7.3 Spherical Wave Intensity
35(1)
1.8 SOUND POWER
36(1)
1.9 UNITS
36(3)
1.10 SPECTRA
39(5)
1.10.1 Frequency Analysis
41(3)
1.11 COMBINING SOUND PRESSURES
44(7)
1.11.1 Coherent and Incoherent Sounds
44(1)
1.11.2 Addition of Coherent Sound Pressures
45(1)
1.11.3 Beating
45(2)
1.11.4 Addition of Incoherent Sounds (Logarithmic Addition)
47(2)
1.11.5 Subtraction of Sound Pressure Levels
49(1)
1.11.6 Combining Level Reductions
49(2)
1.12 IMPEDANCE
51(1)
1.12.1 Mechanical Impedance, Zm
51(1)
1.12.2 Specific Acoustic Impedance, Z
51(1)
1.12.3 Acoustic Impedance, ZA
52(1)
1.13 FLOW RESISTANCE
52(2)
CHAPTER TWO The human ear 54(38)
2.1 BRIEF DESCRIPTION OF THE EAR
54(10)
2.1.1 External Ear
54(1)
2.1.2 Middle Ear
55(1)
2.1.3 Inner Ear
56(3)
2.1.4 Cochlear Duct or Partition
59(1)
2.1.5 Hair Cells
60(1)
2.1.6 Neural Encoding
61(1)
2.1.7 Linear Array of Uncoupled Oscillators
62(2)
2.2 MECHANICAL PROPERTIES OF THE CENTRAL PARTITION
64(13)
2.2.1 Basilar Membrane Travelling Wave
64(4)
2.2.2 Energy Transport and Group Speed
68(1)
2.2.3 Un-damping
69(1)
2.2.4 The Half Octave Shift
70(4)
2.2.5 Frequency Response
74(1)
2.2.6 Critical Frequency Band
74(2)
2.2.7 Frequency Resolution
76(1)
2.3 NOISE INDUCED HEARING LOSS
77(1)
2.4 SUBJECTIVE RESPONSE TO SOUND PRESSURE LEVEL
78(14)
2.4.1 Masking
79(3)
2.4.2 Loudness
82(1)
2.4.3 Comparative Loudness and the Phon
83(3)
2.4.4 Relative Loudness and the Sone
86(3)
2.4.5 Pitch
89(3)
CHAPTER THREE Instrumentation for noise measurement and analysis 92(31)
3.1 MICROPHONES
92(8)
3.1.1 Condenser Microphone
93(2)
3.1.2 Piezoelectric Microphone
95(1)
3.1.3 Pressure Response
96(1)
3.1.4 Microphone Sensitivity
96(1)
3.1.5 Field Effects and Calibration
97(3)
3.2 WEIGHTING NETWORKS
100(2)
3.3 SOUND LEVEL METERS
102(2)
3.4 GRADES OF SOUND LEVEL METER
104(1)
3.5 SOUND LEVEL METER CALIBRATION
104(1)
3.5.1 Electrical Calibration
104(1)
3.5.2 Acoustical Calibration
104(1)
3.6 NOISE MEASUREMENTS USING SOUND LEVEL METERS
105(2)
3.6.1 Microphone Mishandling
105(1)
3.6.2 Sound Level Meter Amplifier Mishandling
105(1)
3.6.3 Microphone and Sound Level Meter Response Characteristics
106(1)
3.6.4 Background Noise
106(1)
3.6.5 Wind Noise
106(1)
3.6.6 Temperature
106(1)
3.6.7 Humidity and Dust
107(1)
3.6.8 Reflections From Nearby Surfaces
107(1)
3.7 TIME-VARYING SOUND
107(1)
3.8 NOISE LEVEL MEASUREMENT
108(2)
3.9 STATISTICAL ANALYSERS
110(1)
3.10 NOISE DOSIMETERS
110(1)
3.11 TAPE RECORDING OF NOISE
111(2)
3.12 SPECTRUM ANALYSERS
113(1)
3.13 INTENSITY METERS
114(7)
3.13.1 Sound Intensity by the p-u Method
115(1)
3.13.2 Sound Intensity by the p-p Method
116(3)
3.13.3 Frequency Decomposition of the Intensity
119(4)
3.13.3.1 Direct Frequency Decomposition
119(1)
3.13.3.2 Indirect Frequency Decomposition
119(2)
3.14 ENERGY DENSITY SENSORS
121(2)
CHAPTER FOUR Criteria 123(51)
4.1 INTRODUCTION
123(5)
4.1.1 Noise Measures
124(4)
4.1.1.1 A-weighted Equivalent Continuous Noise Level, LAeq
124(1)
4.1.1.2 A-weighted Sound Exposure
124(1)
4.1.1.3 A-weighted Sound Exposure Level, LAE or SEL
125(1)
4.1.1.4 Day-Night Average Sound Level, Ldn or DNL
126(1)
4.1.1.5 Community Noise Equivalent Level, Lden or CNEL
126(1)
4.1.1.6 Effective Perceived Noise Level, LPNE
127(1)
4.1.1.7 Other Descriptors
128(1)
4.2 HEARING LOSS
128(3)
4.2.1 Threshold Shift
128(1)
4.2.2 Presbyacusis
129(1)
4.2.3 Hearing Damage
130(1)
4.3 HEARING DAMAGE RISK
131(13)
4.3.1 Requirements for Speech Recognition
132(1)
4.3.2 Quantifying Hearing Damage Risk
132(2)
4.3.3 International Standards Organization Formulation
134(3)
4.3.4 Alternative Formulations
137(2)
4.3.4.1 Bies and Hansen Formulation
137(1)
4.3.4.2 Dresden Group Formulation
138(1)
4.3.5 Observed Hearing Loss
139(2)
4.3.6 Some Alternative Interpretations
141(3)
4.4 NEARING DAMAGE RISK CRITERIA
144(4)
4.4.1 Continuous Noise
144(1)
4.4.2 Impulse Noise
145(1)
4.4.3 Impact Noise
146(2)
4.5 IMPLEMENTING A HEARING CONSERVATION PROGRAM
148(2)
4.6 SPEECH INTERFERENCE CRITERIA
150(2)
4.6.1 Broadband Background Noise
150(1)
4.6.2 Intense Tones
151(1)
4.7 PSYCHOLOGICAL EFFECTS OF NOISE
152(1)
4.7.1 Noise as a Cause of Stress
152(1)
4.7.2 Effect on Behaviour and Work Efficiency
152(1)
4.8 AMBIENT NOISE LEVEL SPECIFICATION
152(13)
4.8.1 Noise Weighting Curves
154(9)
4.8.1.1 NR Curves
154(2)
4.8.1.2 NC curves
156(1)
4.8.1.3 RC curves
157(2)
4.8.1.4 NCB curves
159(2)
4.8.1.5 RNC curves
161(2)
4.8.2 Comparison of Noise Weighting Curves with dB(A) Specifications
163(1)
4.8.3 Speech Privacy
164(1)
4.9 ENVIRONMENTAL NOISE LEVEL CRITERIA
165(4)
4.9.1 A-weighting Criteria
166(2)
4.9.2 Noise Rating Criteria
168(1)
4.10 ENVIRONMENTAL NOISE SURVEYS
169(5)
4.10.1 Measurement Locations
171(1)
4.10.2 Duration of the Measurement Survey
171(1)
4.10.3 Measurement Parameters
172(1)
4.10.4 Noise Impact
172(2)
CHAPTER FIVE Sound sources and outdoor sound propagation 174(71)
5.1 INTRODUCTION
174(1)
5.2 SIMPLE SOURCE
175(3)
5.2.1 Pulsating Sphere
175(3)
5.2.2 Fluid Mechanical Monopole Source
178(1)
5.3 DIPOLE SOURCE
178(7)
5.3.1 Pulsating Doublet (Far-field Approximation)
179(3)
5.3.2 Vibrating Sphere
182(2)
5.3.3 Fluid Mechanical Dipole Source
184(1)
5.4 QUADRUPOLE SOURCE (FAR-FIELD APPROXIMATION)
185(3)
5.4.1 Lateral Quadrupole
187(1)
5.4.2 Longitudinal Quadrupole
187(1)
5.4.3 Fluid Mechanical Quadrupole Source
187(1)
5.5 LINE SOURCE
188(4)
5.5.1 Infinite Line Source
188(3)
5.5.2 Finite Line Source
191(1)
5.6 PISTON IN AN INFINITE BAFFLE
192(8)
5.6.1 Far Field
192(3)
5.6.2 Near Field On-axis
195(2)
5.6.3 Radiation Load of the Near Field
197(3)
5.7 INCOHERENT PLANE RADIATOR
200(4)
5.7.1 Single Wall
200(4)
5.7.2 Several Walls of a Building or Enclosure
204(1)
5.8 DIRECTIVITY
204(1)
5.9 REFLECTION EFFECTS
205(3)
5.9.1 Simple Source Near a Reflecting Surface
205(1)
5.9.2 Observer Near a Reflecting Surface
206(1)
5.9.3 Observer and Source Both Close to a Reflecting Surface
207(1)
5.10 REFLECTION AND TRANSMISSION AT A PLANE/TWO MEDIA INTERFACE
208(9)
5.10.1 Porous Earth
208(1)
5.10.2 Plane Wave Reflection and Transmission
209(4)
5.10.3 Spherical Wave Reflection at a Plane Interface
213(3)
5.10.4 Effects of Turbulence
216(1)
5.11 SOUND PROPAGATION OUTDOORS, GENERAL CONCEPTS
217(28)
5.11.1 Methodology
217(1)
5.11.2 Limits to Accuracy of Prediction
218(1)
5.11.3 Outdoor Sound Propagation Prediction Schemes
219(1)
5.11.4 Geometrical Spreading
220(1)
5.11.5 Directivity Index
221(1)
5.11.6 Excess Attenuation Factor
221(4)
5.11.7 Air Absorption
225(1)
5.11.8 Shielding by Barriers, Houses and Process Equipment/Industrial Buildings
225(2)
5.11.9 Attenuation Due to Forests and Dense Foliage
227(1)
5.11.10 Ground Effects
228(5)
5.11.10.1 CONCAWE Method
229(1)
5.11.10.2 Simple Method (Hard or Soft Ground)
230(1)
5.11.10.3 Plane Wave Method
230(1)
5.11.10.4 ISO 9613-2 (1996) Method
230(2)
5.11.10.5 Detailed, Accurate and Complex Method
232(1)
5.11.11 Image Inversion and Increased Attenuation at Large Distance
233(1)
5.11.12 Meteorological Effects
234(10)
5.11.12.1 Attenuation in the Shadow Zone (Negative Sonic Gradient)
237(1)
5.11.12.2 Excess Attenuation Calculated According to Tonin (1985)
238(1)
5.11.12.3 Excess Attenuation Calculated According to CONCAWE
239(5)
5.11.12.4 Excess Attenuation Calculated According to ISO 9613-2 (1996)
244(1)
5.11.13 Combined Excess Attenuation Model
244(1)
CHAPTER SIX Sound power, its use and measurement 245(28)
6.1 INTRODUCTION
245(1)
6.2 RADIATION IMPEDANCE
246(2)
6.3 RELATION BETWEEN SOUND POWER AND SOUND PRESSURE
248(1)
6.4 RADIATION FIELD OF A SOUND SOURCE
249(3)
6.4.1 Free-field Simulation in an Anechoic Room
250(2)
6.4.2 Sound Field Produced in an Enclosure
252(1)
6.5 DETERMINATION OF SOUND POWER USING INTENSITY MEASUREMENTS
252(1)
6.6 DETERMINATION OF SOUND POWER USING CONVENTIONAL PRESSURE MEASUREMENTS
253(16)
6.6.1 Measurement in Free or Semi-free Field
254(4)
6.6.2 Measurement in a Diffuse Field
258(3)
6.6.2.1 Substitution Method
260(1)
6.6.2.2 Absolute Method
260(1)
6.6.3 Field Measurement
261(10)
6.6.3.1 Semi-reverberant Field Measurements by Method One
261(2)
6.6.3.2 Semi-reverberant Field Measurements by Method Two
263(1)
6.6.3.3 Semi-reverberant Field Measurements by Method Three
263(2)
6.6.3.4 Near-field Measurements
265(4)
6.7 DETERMINATION OF SOUND POWER USING SURFACE VIBRATION MEASUREMENTS
269(2)
6.8 SOME USES OF SOUND POWER INFORMATION
271(2)
6.8.1 The Far Free Field
271(1)
6.8.2 The Near Free Field
272(1)
CHAPTER SEVEN Sound in enclosed spaces 273(62)
7.1 INTRODUCTION
273(3)
7.1.1 Wall-Interior Modal Coupling
274(1)
7.1.2 Sabine Rooms
274(1)
7.1.3 Flat and Long Rooms
275(1)
7.2 LOW FREQUENCIES
276(5)
7.3 BOUND BETWEEN LOW-FREQUENCY AND HIGH-FREQUENCY BEHAVIOUR
281(3)
7.3.1 Modal Density
282(1)
7.3.2 Modal Damping and Bandwidth
282(1)
7.3.3 Modal Overlap
283(1)
7.3.4 Cross-over Frequency
284(1)
7.4 HIGH FREQUENCIES, STATISTICAL ANALYSIS
284(5)
7.4.1 Effective Intensity in a Diffuse Field
285(2)
7.4.2 Energy Absorption at Boundaries
287(1)
7.4.3 Air Absorption
287(1)
7.4.4 Steady-state Response
288(1)
7.5 TRANSIENT RESPONSE
289(8)
7.5.1 Classical Description
290(1)
7.5.2 Modal Description
291(3)
7.5.3 Empirical Description
294(2)
7.5.4 Mean Free Path
296(1)
7.6 MEASUREMENT OF THE ROOM CONSTANT
297(2)
7.6.1 Reference Sound Source Method
297(1)
7.6.2 Reverberation Time Method
298(1)
7.7 POROUS SOUND ABSORBERS
299(7)
7.7.1 Measurement of Absorption Coefficients
299(4)
7.7.2 Noise Reduction Index (NRI)
303(1)
7.7.3 Porous Liners
303(1)
7.7.4 Porous Liners with Perforated Panel Facings
304(1)
7.7.5 Sound Absorption Coefficients of Materials in Combination
305(1)
7.8 PANEL SOUND ABSORBERS
306(4)
7.8.1 Empirical Method
306(2)
7.8.2 Analytical Method
308(2)
7.9 FLAT AND LONG ROOMS
310(17)
7.9.1 Flat Room with Specularly Reflecting Floor and Ceiling
312(2)
7.9.2 Flat Room with Diffusely Reflecting Floor and Ceiling
314(6)
7.9.3 Flat Room with Specularly and Diffusely Reflecting Boundaries
320(2)
7.9.4 Long Room with Specularly Reflecting Walls
322(2)
7.9.5 Long Room with Circular Cross-section and Diffusely Reflecting wall
324(2)
7.9.6 Long Room with Rectangular Cross-Section
326(1)
7.10 APPLICATIONS OF SOUND ABSORPTION
327(1)
7.10.1 Relative Importance of the Reverberant Field
327(1)
7.10.2 Reverberation Control
327(1)
7.11 AUDITORIUM DESIGN
328(7)
7.11.1 Reverberation Time
328(2)
7.11.2 Early Decay Time (EDT)
330(1)
7.11.3 Clarity(C80)
331(1)
7.11.4 Envelopment
331(1)
7.11.5 Interaural Cross Correlation Coefficient, JACC
331(1)
7.11.6 Background Noise Level
332(1)
7.11.7 Total Sound Level or Loudness, G
332(1)
7.11.8 Diffusion
332(1)
7.11.9 Speech Intelligibility
333(1)
7.11.10 Estimation of Parameters for Occupied Concert Halls
333(1)
7.11.11 Optimum Volumes for Auditoria
334(1)
CHAPTER EIGHT Partitions, enclosures and barriers 335(71)
8.1 INTRODUCTION
335(1)
8.2 SOUND TRANSMISSION THROUGH PARTITIONS
336(30)
8.2.1 Bending Waves
336(5)
8.2.2 Transmission Loss
341(4)
8.2.3 Impact Isolation
345(2)
8.2.4 Panel Transmission Loss (or Sound Reduction Index)
347(9)
8.2.5 Sandwich Panels
356(1)
8.2.6 Double Wall Transmission Loss
356(9)
8.2.6.1 Staggered Studs
364(1)
8.2.6.2 Panel Damping
365(1)
8.2.7 Triple Wall Sound Transmission Loss
365(1)
8.2.8 Common Building Materials
366(1)
8.2.9 Sound-absorptive Linings
366(1)
8.3 COMPOSITE TRANSMISSION LOSS
366(9)
8.4 ENCLOSURES
375(12)
8.4.1 Noise Inside Enclosures
375(1)
8.4.2 Noise Outside Enclosures
375(3)
8.4.3 Personnel Enclosures
378(3)
8.4.4 Enclosure Windows
381(1)
8.4.5 Enclosure Leakages
382(1)
8.4.6 Access and Ventilation
383(1)
8.4.7 Enclosure Vibration Isolation
384(1)
8.4.8 Enclosure Resonances
384(2)
8.4.9 Close-fitting Enclosures
386(1)
8.4.10 Partial Enclosures
386(1)
8.5 BARRIERS
387(16)
8.5.1 Diffraction at the Edge of a Thin Sheet
388(3)
8.5.2 Outdoor Barriers
391(11)
8.5.2.1 Thick Barriers
394(4)
8.5.2.2 Shielding by Terrain
398(1)
8.5.2.3 Effects of Wind and Temperature Gradients on Barrier Attenuation
398(2)
8.5.2.4 ISO 9613-2 Approach to Barrier Insertion Loss Calculations
400(2)
8.5.3 Indoor Barriers
402(1)
8.6 PIPE LAGGING
403(3)
8.6.1 Porous Material Lagging
403(1)
8.6.2 Impermeable Jacket and Porous Blanket Lagging
404(2)
CHAPTER NINE Muffling devices 406(67)
9.1 INTRODUCTION
406(1)
9.2 MEASURES OF PERFORMANCE
406(1)
9.3 DIFFUSERS AS MUFFLING DEVICES
407(1)
9.4 CLASSIFICATION OF MUFFLING DEVICES
408(1)
9.5 ACOUSTIC IMPEDANCE
409(2)
9.6 LUMPED ELEMENT DEVICES
411(9)
9.6.1 Impedance of an Orifice or a Short Narrow Duct
411(8)
9.6.1.1 End Correction
414(3)
9.6.1.2 Acoustic Resistance
417(2)
9.6.2 Impedance of a Volume
419(1)
9.7 REACTIVE DEVICES
420(24)
9.7.1 Acoustical Analogs of Kirchhoffs Laws
420(1)
9.7.2 Side Branch Resonator
421(4)
9.7.3 Resonator Mufflers
425(2)
9.7.4 Expansion Chamber
427(4)
9.7.5 Small Engine Exhaust
431(2)
9.7.6 Lowpass Filter
433(5)
9.7.7 Pressure Drop Calculations for Reactive Muffling Devices
438(4)
9.7.8 Flow-generated Noise
442(2)
9.8 LINED DUCTS
444(18)
9.8.1 Locally Reacting and Bulk Reacting Liners
445(1)
9.8.2 Liner Specification
446(2)
9.8.3 Lined Duct Silencers
448(12)
9.8.3.1 Flow Effects
455(1)
9.8.3.2 Higher Order Mode Propagation
456(4)
9.8.4 Cross-sectional Discontinuities
460(2)
9.8.5 Pressure Drop Calculations for Dissipative Mufflers
462(1)
9.9 DUCT BENDS
462(1)
9.10 UNLINED DUCTS
463(1)
9.11 EFFECT OF DUCT END REFLECTIONS
463(1)
9.12 DUCT BREAK-OUT NOISE
463(3)
9.12.1 Break-out Sound Transmission
463(3)
9.12.2 Break-in Sound Transmission
466(1)
9.13 LINED PLENUM ATTENUATOR
466(2)
9.14 WATER INJECTION
468(1)
9.15 DIRECTIVITY OF EXHAUST DUCTS
469(4)
CHAPTER TEN Vibration control 473(37)
10.1 INTRODUCTION
473(2)
10.2 VIBRATION ISOLATION
475(15)
10.2.1 Single-degree-of-freedom Systems
476(6)
10.2.2 Four-isolator Systems
482(2)
10.2.3 Two-stage Vibration Isolation
484(2)
10.2.4 Practical Isolator Considerations
486(4)
10.2.4.1 Lack of Stiffness of Equipment Mounted on Isolators
488(1)
10.2.4.2 Lack of Stiffness of Foundations
488(2)
10.2.4.3 Superimposed Loads on Isolators
490(1)
10.3 TYPES OF ISOLATORS
490(4)
10.3.1 Rubber
490(1)
10.3.2 Metal Springs
491(2)
10.3.3 Cork
493(1)
10.3.4 Felt
493(1)
10.3.5 Air Springs
493(1)
10.4 VIBRATION ABSORBERS
494(3)
10.5 VIBRATION MEASUREMENT
497(7)
10.5.1 Acceleration Transducers
497(5)
10.5.1.1 Sources of Measurement Error
500(1)
10.5.1.2 Sources of Error in the Measurement of Transients
500(1)
10.5.1.3 Accelerometer Calibration
501(1)
10.5.1.4 Accelerometer Mounting
501(1)
10.5.1.5 Piezo-resistive Accelerometers
502(1)
10.5.2 Velocity Transducers
502(1)
10.5.3 Instrumentation Systems
503(1)
10.5.4 Units of Vibration
504(1)
10.6 DAMPING OF VIBRATING SURFACES
504(3)
10.6.1 When Damping is Effective and Ineffective
504(2)
10.6.2 Damping Methods
506(1)
10.7 MEASUREMENT OF DAMPING
507(3)
CHAPTER ELEVEN Sound power and sound pressure level estimation procedures 510(60)
11.1 INTRODUCTION
510(1)
11.2 FAN NOISE
511(4)
11.3 AIR COMPRESSORS
515(4)
11.3.1 Small Compressors
515(1)
11.3.2 Large Compressors (Noise Levels Within the Inlet and Exit Piping)
516(2)
11.3.2.1 Centrifugal Compressors (Interior Noise Levels)
516(1)
11.3.2.2 Rotary or Axial Compressors (Interior Noise Levels)
516(2)
11.3.2.3 Reciprocating compressors (interior noise)
518(1)
11.3.3 Large Compressors (Exterior Noise Levels)
518(1)
11.4 COMPRESSORS FOR REFRIGERATION UNITS
519(1)
11.5 COOLING TOWERS
519(4)
11.6 PUMPS
523(1)
11.7 JETS
524(5)
11.7.1 General Estimation Procedures
524(4)
11.7.2 Gas and Steam Vents
528(1)
11.7.3 General Jet Noise Control
528(1)
11.8 CONTROL VALVES
529(16)
11.8.1 Internal Sound Power Generation
530(6)
11.8.2 Internal Sound Pressure Level
536(3)
11.8.3 External Sound Pressure Level
539(4)
11.8.4 High Exit Velocities
543(1)
11.8.5 Control Valve Noise Reduction
543(1)
11.8.6 Control Valves for Liquids
543(2)
11.8.7 Control Valves for Steam
545(1)
11.9 PIPE FLOW
545(1)
11.10 BOILERS
546(1)
11.11 TURBINES
547(1)
11.12 DIESEL AND GAS-DRIVEN ENGINES
548(3)
11.12.1 Exhaust Noise
549(1)
11.12.2 Casing Noise
549(2)
11.12.3 Inlet Noise
551(1)
11.13 FURNACE NOISE
551(2)
11.14 ELECTRIC MOTORS
553(1)
11.14.1 Small Electric Motors (Below 300 kW)
553(1)
11.14.2 Large Electric Motors (Above 300 kW)
554(1)
11.15 GENERATORS
554(1)
11.16 TRANSFORMERS
554(2)
11.17 GEARS
556(1)
11.18 TRANSPORTATION NOISE
557(13)
11.18.1 Road Traffic Noise
557(6)
11.18.1.1 UK DoT model (CoRTN)
557(4)
11.18.1.2 United States FWHA Traffic Noise Model (TNM)
561(1)
11.18.1.3 Other Models
562(1)
11.18.2 Rail Traffic Noise
563(5)
11.18.3 Aircraft Noise
568(2)
CHAPTER TWELVE Active noise control 570(26)
12.1 INTRODUCTION
570(3)
12.2 ACTIVE CONTROL OF SOUND PROPAGATION IN DUCTS
573(9)
12.2.1 Active Control of Plane Wave Propagation
573(1)
12.2.2 Active Control of Higher Order Mode Propagation
573(1)
12.2.3 Periodic Feedforward Controller
574(2)
12.2.4 Random Noise Feedforward Controller
576(3)
12.2.5 Feedback Controller
579(1)
12.2.6 Control Sound Sources
580(2)
12.2.7 Microphones
582(1)
12.3 ACTIVE CONTROL OF SOUND RADIATION FROM VIBRATING STRUCTURES
582(4)
12.3.1 Physical Control Mechanisms
583(2)
12.3.2 Control Actuators and Error Sensors
585(1)
12.4 SOUND TRANSMISSION INTO ENCLOSED SPACES
586(5)
12.5 ACTIVE VIBRATION ISOLATION
591(1)
12.6 ELECTRONIC CONTROLLER DESIGN
592(4)
CHAPTER THIRTEEN Survey of analytical techniques for the estimation of sound power levels 596(6)
13.1 INTRODUCTION
596(1)
13.2 LOW-FREQUENCY REGION
597(3)
13.2.1 Helmholtz Method
598(1)
13.2.2 Rayleigh Method
599(1)
13.2.3 Simple Acoustic Modelling
600(1)
13.3 HIGH-FREQUENCY REGION
600(2)
APPENDIX A Wave equation derivation 602(7)
A.1 CONSERVATION OF MASS
602(1)
A.2 EULER'S EQUATION
603(1)
A.3 EQUATION OF STATE
604(1)
A.4 WAVE EQUATION (LINEARIZED)
605(4)
APPENDIX B Properties of materials 609(2)
APPENDIX C Acoustical properties of porous materials 611(17)
C.1 FLOW RESISTANCE AND RESISTIVITY
611(2)
C.2 SOUND PROPAGATION IN POROUS MEDIA
613(2)
C.3 SOUND REDUCTION DUE TO PROPAGATION THROUGH A POROUS MATERIAL
615(1)
C.4 MEASUREMENT AND CALCULATION OF ABSORPTION COEFFICIENTS
616(12)
C.4.1 Porous Materials with a Backing Cavity
624(1)
C.4.2 Porous Liner Covered with a Limp Impervious Layer
625(1)
C.4.3 Porous Liner Covered with a Perforated Sheet
626(1)
C.4.4 Porous Liner Covered with a Limp Impervious Layer and a Perforated Sheet
626(2)
APPENDIX D Frequency analysis 628(17)
D.1 DIGITAL FILTERING
628(1)
D.2 DIGITAL FOURIER ANALYSIS
629(12)
D.2.1 Power Spectrum
634(3)
D.2.2 Sampling Frequency and Aliasing
637(2)
D.2.3 Uncertainty Principle
639(1)
D.2.4 Real-time Frequency
639(1)
D.2.5 Weighting Functions
639(2)
D.2.6 Zoom Analysis
641(1)
D.3 IMPORTANT FUNCTIONS
641(4)
D.3.1 Cross-spectrum
642(1)
D.3.2 Coherence
643(1)
D.3.3 Frequency Response (or Transfer) Function
643(2)
References 645(17)
List of acoustical standards 662(20)
Glossary of symbols 682(27)
Index 709

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program