did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780130354822

Engineering Our Digital Future The Infinity Project

by ; ; ; ; ; ;
  • ISBN13:

    9780130354822

  • ISBN10:

    0130354821

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2003-07-14
  • Publisher: Pearson

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $133.32 Save up to $86.66
  • Rent Book $46.66
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    IN STOCK USUALLY SHIPS IN 24 HOURS.
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

Supplemental Materials

What is included with this book?

Summary

This book,Engineering Our Digital Future, plus a broad spectrum of supplemental materials, classroom technology, and a comprehensive instructor training programwork in concert to motivate users to learn about the infinite possibilities of technology and engineering in today's world. Developed by a national team led by Southern Methodist University and Texas Instruments, this book is the first of its kind in the country.Chapter topics include: The World of Modern Engineering; Creating Digital Music; Making Digital Images; Math You Can See; Digitizing the World; Coding Information for Storage and Secrecy; Communicating with Ones and Zeros; Networks from the Telegraph to the Internet; and The Big Picture.A new outlook into the possibilities of technology and engineering for beginner engineers.

Author Biography

Geoffrey C. Orsak is Associate Dean for Research and Development and a Professor with the Department of Electrical Engineering, Southern Methodist University. He also serves as the Executive Director of the federally supported Institute for Engineering Education at SMU and Director of the Infinity Project. Dr. Orsak is widely regarded as one of the nation's leaders in K-12 engineering education.

In addition to these activities, he has served as an advisor on matters associated with the science and technology of national defense to the U.S. Department of Defense; the National Academy of Engineering; the Institute for Defense Analysis, among others. Dr. Orsak received the B.S.E.E., M.E.E., and Ph.D. degrees in electrical and computer engineering from Rice University, Houston, TX.

Sally L. Wood is a Professor with the Department of Electrical Engineering, Santa Clara University, the oldest university in California. For the past six years, she has also been the head of the department. She was born in Swansea MA, raised in Georgia, and graduated from high school in Washington state. After she received the B.S. degree from Columbia University, she worked for five years in the northeast and in Europe designing systems to automatically read printed text. She then returned to graduate school at Stanford University and earned a Ph.D. degree for research on medical imaging. She enjoys teaching classes from the freshman level to the graduate level in digital logic and signal processing and continues her research on video and image processing. She is a past vice president of the IEEE Signal Processing Society.

Scott C. Douglas is an Associate Professor with the Department of Electrical Engineering, Southern Methodist University. He is also the Associate Director for the Institute for Engineering Education at SMU. Before attending college, he was drawn to engineering through his love of music and the arts, and he has performed in numerous orchestras, bands, and musical groups as a saxophonist and singer throughout his life. He received the B.S., M.S., and Ph.D. degrees from Stanford University. Afterward, he became a professor, educator, and engineering researcher. He regularly consults with companies all over the world on topics related to his research interests, which focus on the processing of acoustic signals for sound and vibration control, speech enhancement, and spatial understanding.

David C. Munson, Jr. is both the Chairman and a Professor with the Department of Electrical and Computer Engineering, University of Michigan. Prior to this, he was a Professor with the Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign. His research focuses on computer algorithms for tomography and synthetic aperture radar. In addition to his research, Dr. Munson particularly enjoys being in the classroom, where he has taught thousands of students their first course in digital signal processing. He received the B.S. degree from the University of Delaware and the M.S., M.A., and Ph.D. degrees from Princeton University, all in electrical engineering. Dr. Munson is a past-president of the IEEE Signal Processing Society and the founding editor-in-chief of the IEEE Transactions on Image Processing.

John R. Treichler is the Chief Technical Officer of Applied Signal Technology, Inc., an engineering company that builds specialized electronic equipment for the U.S. government and its friends overseas. His research focuses on the application of advanced technology to communications systems. Dr. Treichler has been a professor at both Cornell University and Stanford University. He received the B.A. and Masters of Electrical Engineering degrees from Rice University and the Ph.D. degree from Stanford University. He served aboard ships as an officer in the U.S. Navy, and continues to work at the company he co-founded.

Ravindra Athale is currently a Program Manager of Photonics at the Defense Advanced Research Projects Agency (DARPA), on leave from George Mason University. Prior to this, he has worked at various government research labs and in private industry. He has been fascinated by everything optical—lasers, holography, liquid crystals, optical computers—for his entire career. He is the co-inventor of HoloSpex glasses, which is the first mass scale consumer product based on the esoteric technology of far-field computer-generated holography. Dr. Athale received the B.Sc. and M.Sc. degrees in physics in India and the Ph.D. degree from the University of California, San Diego, in electrical engineering. During his career as a professor, he has developed and taught a course that teaches principles of information technology to non-science and engineering students.

Mark A. Yoder is a Professor with the Department of Electrical and Computer Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN. Dr. Yoder received the B.S. degree in 1980 and the Ph.D. degree in 1984, both in electrical engineering and both from Purdue University. While working as a research scientist, he discovered that teaching engineering was most enjoyable, prompting him to join Rose-Hulman Institute of Technology. He is a national leader in teaching digital signal processing to young college students, using symbolic algebra systems in electrical engineering education and in developing engineering curriculums for high school students.

Table of Contents

The World of Modern Engineering
Creating Digital Music
Making Digital Images
Math You Can See
Digitizing the World
Coding Information for Storage and Secrecy
Communicating with Ones and Zeros
Networks from the Telegraph to the Internet
The Big Picture
Table of Contents provided by Publisher. All Rights Reserved.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Excerpts

ABOUT THE INFINITY PROJECTAs we move into the 21st century, engineering and technology will have an ever-increasing impact on our daily activities. Yet as our lives have become more and more dependent on technology, public awareness and knowledge about technology-related issues has declined. All of this is compounded by the fact that young students today continue to see little relevance in traditional math and science curricula--sadly suggesting that this unfortunate trend may continue into the foreseeable future, resulting in a reduced ability of our population to deal with society's challenges.The Infinity Project was created to address just this problem by developing an innovative approach to applying ,fundamental science and mathematics concepts to solving contemporary engineering problems. This nationwide program, designed by leading college engineering professors in cooperation with education experts, is sponsored and run by the Institute for Engineering Education at SMU, with generous support from Texas Instruments, the National Science Foundation, and the Department of Education.The Infinity Project engineering and technology curriculum encourages students to be curious about math and science by connecting their relevance to prized personal technologies such as MP3, CD, and DVD players; cellular phones; pagers; and handheld video devices. The perennial question "Why do I need to learn this?" is answered in ways that are both relevant and fun. The Infinity Project curriculum sharpens math- and science-based problem-solving skills, and encourages students to be innovative, to go beyond what is, and to dream of what can be.The Infinity Project supplies schools and teachers with a complete turnkey solution that includes this first-of-its-kind engineering textbook.Engineering Our Digital Futurecovers a selection of topics and hands-on activities to inspire and excite students. The Infinity Project curriculum encourages young people to learn about engineering, inspires them to understand the relevance of technology and the importance of mathematics and science, and shows how these concepts can lead to rewarding, challenging, and creative career opportunities. And although we emphasize the current leading-edge digital technologies that are important and exciting to today's youth, the approach to problem solving emphasized throughout the book applies to all fields of engineering and many other professions as well.The Infinity Project provides a complete answer for effectively and easily incorporating engineering and technology into standard curricula today: stimulating, well-thought-out content; comprehensive teacher training; cutting-edge classroom technology; lab materials and lab activities; and an outstanding supplements package. On-line Web support guarantees that you are never alone. CURRICULUMThe Infinity Project curriculum is typically covered in a yearlong class. Students learn how to apply math and science concepts to design new technologies involving digital music and images, special effect" for films, personal communication devices such as cell phones, and the Internet--all while clearly understanding how information in the digital era is collected, stored, processed, and moved around the globe.The curriculum is significantly enhanced by many hands-on experiments that are carefully integrated with the course materials. The classroom and lab equipment produced by the Infinity Project, in partnership with Texas Instruments and Hyperception, Inc., is based on new cutting-edge digital signal processing technology and has been made available by our industrial partners as the Infinity Technology Kit. This very low cost kit converts standard PCs found in classrooms and laboratories into a modern engineering design platform and allows instructors to clearly demonstrate engineering design in the digital era. The modern design tools that are

Rewards Program