did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9789812560483

Equilibrium Statistical Physics

by
  • ISBN13:

    9789812560483

  • ISBN10:

    9812560483

  • Edition: 3rd
  • Format: Hardcover
  • Copyright: 2014-08-01
  • Publisher: World Scientific Pub Co Inc
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $134.00
We're Sorry.
No Options Available at This Time.

Summary

- Each chapter contains a substantial number of exercises- A manual with a complete set of solutions to these problems is available under separate cover

Table of Contents

Preface to the First Edition xi
Preface to the Second Edition xiv
Preface Aire to the Third Edition xv
1 Review of Thermodynamics
1(28)
1.1 State Variables and Equations of State
1(2)
1.2 Laws of Thermodynamics
3(6)
1.2.1 First law
3(2)
1.2.2 Second law
5(4)
1.3 Thermodynamic Potentials
9(3)
1.4 Gibbs-Duhem and Maxwell Relations
12(2)
1.5 Response Functions
14(2)
1.6 Conditions for Equilibrium and Stability
16(2)
1.7 Magnetic Work
18(2)
1.8 Thermodynamics of Phase Transitions
20(4)
1.9 Problems
24(5)
2. Statistical Ensembles
29(34)
2.1 Isolated Systems: Microcanonical Ensemble
30(5)
2.2 Systems at Fixed Temperature: Canonical Ensemble
35(5)
2.3 Grand Canonical Ensemble
40(3)
2.4 Quantum Statistics
43(5)
2.4.1 Harmonic oscillator
44(1)
2.4.2 Noninteracting fermions
44(1)
2.4.3 Noninteracting bosons
45(1)
2.4.4 Density matrix
46(2)
2.5 Maximum Entropy Principle
48(5)
2.6 Thermodynamic Variational Principles
53(1)
2.6.1 Schottky defects in a crystal
53(1)
2.7 Problems
54(9)
3 Mean Field and Landau Theory
63(46)
3.1 Mean Field Theory of the Ising Model
64(3)
3.2 Bragg—Williams Approximation
67(2)
3.3 A Word of Warning
69(2)
3.4 Bethe Approximation
71(3)
3.5 Critical Behavior of Mean Field Theories
74(3)
3.6 Ising Chain: Exact Solution
77(6)
3.7 Landau Theory of Phase Transitions
83(3)
3.8 Symmetry Considerations
86(4)
3.8.1 Potts model
87(3)
3.9 Landau Theory of Tricritical Points
90(4)
3.10 Landau—Ginzburg Theory for Fluctuations
94(4)
3.11 Multicomponent Order Parameters: n-Vector Model
98(2)
3.12 Problems
100(9)
4 Applications of Mean Field Theory
109(34)
4.1 Order—Disorder Transition
110(4)
4.2 Maier--Saupe Model
114(6)
4.3 Blume—Emery—Griffiths Model
120(3)
4.4 Mean Field Theory of Fluids: van der Waals Approach
123(6)
4.5 Spruce Budworm Model
129(3)
4.6 A Non-Equilibrium System: Two Species Asymmetric Exclusion
132(5)
4.7 Problems
137(6)
5 Dense Gases and Liquids
143(40)
5.1 Virial Expansion
145(6)
5.2 Distribution Functions
151(10)
5.2.1 Pair correlation function
151(6)
5.2.2 BBGKY hierarchy
157(1)
5.2.3 Ornstein—Zernike equation
158(3)
5.3 Perturbation Theory
161(2)
5.4 Inhomogeneous Liquids
163(8)
5.4.1 Liquid—vapor interface
164(5)
5.4.2 Capillary waves
169(2)
5.5 Density-Functional Theory
171(10)
5.5.1 Functional differentiation
171(3)
5.5.2 Free-energy functionals and correlation functions
174(5)
5.5.3 Applications
179(2)
5.6 Problems
181(2)
6 Critical Phenomena I
183(54)
6.1 Model in Two Dimensions
184(15)
6.1.1 Transfer matrix
184(4)
6.1.2 Transformation to an interacting fermion problem
188(3)
6.1.3 Calculation of eigenvalues
191(3)
6.1.4 Thermodynamic functions
194(5)
6.1.5 Concluding remarks
199(1)
6.2 Series Expansions
199(12)
6.2.1 High-temperature expansions
200(6)
6.2.2 Low-temperature expansions
206(1)
6.2.3 Analysis of series
206(5)
6.3 Scaling
211(7)
6.3.1 Thermodynamic considerations
211(1)
6.3.2 Scaling hypothesis
212(3)
6.3.3 Kadanoff block spins
215(3)
6.4 Finite-Size Scaling
218(5)
6.5 Universality
223(3)
6.6 Kosterlitz—Thouless Transition
226(7)
6.7 Problems
233(4)
7 Critical Phenomena II: The Renormalization Group
237(66)
7.1 The Ising Chain Revisited
238(4)
7.2 Fixed Points
242(6)
7.3 An Exactly Solvable Model: Ising Spins on a Diamond Fractal
248(10)
7.4 Position Space Renormalization: Cumulant Method
258(9)
7.4.1 First-order approximation
262(2)
7.4.2 Second-order approximation
264(3)
7.5 Other Position Space Renormalization (Troup Methods
267(8)
7.5.1 Finite lattice methods
267(1)
7.5.2 Adsorbed monolayers: Ising antiferromagnet
268(4)
7.5.3 Monte Carlo renormalization
272(3)
7.6 Phenomenological Renormalization Group
275(4)
7.7 The &Expansion
279(13)
7.7.1 The Gaussian model
281(3)
7.7.2 The S4 model
284(6)
7.7.3 Conclusion
290(2)
Appendix: Second Order Cumulant Expansion
292(3)
7.8 Problems
295(8)
8 Stochastic Processes
303(46)
8.1 Markov Processes and the Master Equation
304(2)
8.2 Birth and Death Processes
306(3)
8.3 Branching Processes
309(4)
8.4 Fokker—Planck Equation
313(3)
8.5 Fokker—Planck Equation with Several Variables: SIR Model
316(5)
8.6 Jump Moments for Continuous Variables
321(7)
8.6.1 Brownian motion
323(3)
8.6.2 Rayleigh and Kramers equations
326(2)
8.7 Diffusion, First Passage and Escape
328(12)
8.7.1 Natural boundaries: The Kimura—Weiss model for genetic drift
329(2)
8.7.2 Artificial boundaries
331(1)
8.7.3 First passage time and escape probability
332(5)
8.7.4 Kramers escape rate
337(3)
8.8 Transformations of the Fokker—Planck Equation
340(5)
8.8.1 Heterogeneous diffusion
340(3)
8.8.2 Transformation to the Schrödinger equation
343(2)
8.9 Problems
345(4)
9 Simulations
349(34)
9.1 Molecular Dynamics
350(7)
9.1.1 Conservative molecular dynamics
351(2)
9.1.2 Brownian dynamics
353(2)
9.1.3 Data analysis
355(2)
9.2 Monte Carlo Method
357(8)
9.2.1 Discrete time Markov processes
358(1)
9.2.2 Detailed balance and the Metropolis algorithm
359(4)
9.2.3 Histogram methods
363(2)
9.3 Data Analysis
365(6)
9.3.1 Fluctuations
365(2)
9.3.2 Error estimates
367(1)
9.3.3 Extrapolation to the thermodynamic limit
368(3)
9.4 The Hopfield Model of Neural Nets
371(5)
9.5 Simulated Quenching and Annealing
376(3)
9.6 Problems
379(4)
10 Polymers and Membranes 383(38)
10.1 Linear Polymers
384(7)
10.1.1 The freely jointed chain
386(3)
10.1.2 The Gaussian chain
389(2)
10.2 Excluded Volume Effects: Flory Theory
391(4)
10.3 Polymers and the n-Vector Model
395(5)
10.4 Dense Polymer Solutions
400(5)
10.5 Membranes
405(13)
10.5.1 Phantom membranes
406(3)
10.5.2 Self-avoiding membranes
409(6)
10.5.3 Liquid membranes
415(3)
10.6 Problems
418(3)
11 Quantum Fluids 421(40)
11.1 Bose Condensation
422(8)
11.2 Superfluidity
430(12)
11.2.1 Qualitative features of superfluidity
430(9)
11.2.2 Bogoliubov theory of the 4He excitation spectrum
439(3)
11.3 Superconductivity
442(14)
11.3.1 Cooper problem
443(2)
11.3.2 BCS ground state
445(4)
11.3.3 Finite-temperature BCS theory
449(4)
11.3.4 Landau–Ginzburg theory of superconductivity
453(3)
11.4 Problems
456(5)
12 Linear Response Theory 461(52)
12.1 Exact Results
462(10)
12.1.1 Generalized susceptibility and the structure factor
462(7)
12.1.2 Thermodynamic properties
469(1)
12.1.3 Sum rules and inequalities
470(2)
12.2 Mean Field Response
472(18)
12.2.1 Dielectric function of the electron gas
473(2)
12.2.2 Weakly interacting Bose gas
475(2)
12.2.3 Excitations of the Heisenberg ferromagnet
477(3)
12.2.4 Screening and plasmons
480(6)
12.2.5 Exchange and correlation energy
486(1)
12.2.6 Phonons in metals
487(3)
12.3 Entropy Production, the Kubo Formula, and the Onsager Relations for Transport Coefficients
490(8)
12.3.1 Kubo formula
490(2)
12.3.2 Entropy production and generalized currents and forces
492(2)
12.3.3 Microscopic reversibility: Onsager relations
494(4)
12.4 The Boltzmann Equation
498(9)
12.4.1 Fields, drift and collisions
498(2)
12.4.2 DC conductivity of a metal
500(3)
12.4.3 Thermal conductivity and thermoelectric effects
503(4)
12.5 Problems
507(6)
13 Disordered Systems 513(56)
13.1 Single-Particle States in Disordered Systems
515(15)
13.1.1 Electron states in one dimension
516(1)
13.1.2 Transfer matrix
517(6)
13.1.3 Localization in three dimensions
523(2)
13.1.4 Density of states
525(5)
13.2 Percolation
530(12)
13.2.1 Scaling theory of percolation
533(3)
13.2.2 Series expansions and renormalization group
536(4)
13.2.3 Rigidity percolation
540(2)
13.2.4 Conclusion
542(1)
13.3 Phase Transitions in Disordered Materials
542(9)
13.3.1 Statistical formalism and the replica trick
544(2)
13.3.2 Nature of phase transitions
546(5)
13.4 Strongly Disordered Systems
551(14)
13.4.1 Molecular glasses
552(2)
13.4.2 Spin glasses
554(4)
13.4.3 Sherrington—Kirkpatrick model
558(7)
13.5 Problems
565(4)
A Occupation Number Representation 569(14)
Bibliography 583(20)
Index 603

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program