rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9781617298158

Experimentation for Engineers

by
  • ISBN13:

    9781617298158

  • ISBN10:

    1617298158

  • Format: Nonspecific Binding
  • Copyright: 2023-03-21
  • Publisher: Simon & Schuster

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $58.64 Save up to $28.00
  • Rent Book $30.64
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-5 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

How To: Textbook Rental

Looking to rent a book? Rent Experimentation for Engineers [ISBN: 9781617298158] for the semester, quarter, and short term or search our site for other textbooks by David Sweet. Renting a textbook can save you up to 90% from the cost of buying.

Summary

Optimize the performance of your systems with practical experiments used by engineers in the world’s most competitive industries.

In Experimentation for Engineers: From A/B testing to Bayesian optimization you will learn how to:

Design, run, and analyze an A/B test
Break the "feedback loops" cause by periodic retraining of ML models
Increase experimentation rate with multi-armed bandits
Tune multiple parameters experimentally with Bayesian optimization
Clearly define business metrics used for decision making
Identify and avoid the common pitfalls of experimentation

Experimentation for Engineers: From A/B testing to Bayesian optimization is a toolbox of techniques for evaluating new features and fine-tuning parameters. You’ll start with a deep dive into methods like A/B testing, and then graduate to advanced techniques used to measure performance in industries such as finance and social media. Learn how to evaluate the changes you make to your system and ensure that your testing doesn’t undermine revenue or other business metrics. By the time you’re done, you’ll be able to seamlessly deploy experiments in production while avoiding common pitfalls.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Does my software really work? Did my changes make things better or worse? Should I trade features for performance? Experimentation is the only way to answer questions like these. This unique book reveals sophisticated experimentation practices developed and proven in the world’s most competitive industries that will help you enhance machine learning systems, software applications, and quantitative trading solutions.

About the book
Experimentation for Engineers: From A/B testing to Bayesian optimization delivers a toolbox of processes for optimizing software systems. You’ll start by learning the limits of A/B testing, and then graduate to advanced experimentation strategies that take advantage of machine learning and probabilistic methods. The skills you’ll master in this practical guide will help you minimize the costs of experimentation and quickly reveal which approaches and features deliver the best business results.

What's inside

Design, run, and analyze an A/B test
Break the “feedback loops” caused by periodic retraining of ML models
Increase experimentation rate with multi-armed bandits
Tune multiple parameters experimentally with Bayesian optimization

About the reader
For ML and software engineers looking to extract the most value from their systems. Examples in Python and NumPy.

About the author
David Sweet has worked as a quantitative trader at GETCO and a machine learning engineer at Instagram. He teaches in the AI and Data Science master's programs at Yeshiva University.

Table of Contents
1 Optimizing systems by experiment
2 A/B testing: Evaluating a modification to your system
3 Multi-armed bandits: Maximizing business metrics while experimenting
4 Response surface methodology: Optimizing continuous parameters
5 Contextual bandits: Making targeted decisions
6 Bayesian optimization: Automating experimental optimization
7 Managing business metrics
8 Practical considerations

Author Biography

David Sweet has worked as a quantitative trader at GETCO and a machine learning engineer at Instagram, where he used experimental methods to tune trading systems and recommender systems. This book is an extension of his lectures on tuning quantitative trading systems given at NYU Stern over the past three years.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program