Finite Mixture Models

by ;
  • ISBN13:


  • ISBN10:


  • Edition: 1st
  • Format: eBook
  • Copyright: 2005-02-07
  • Publisher: Wiley-Interscience

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $195.20 Save up to $19.52
  • Rent Book $175.68
    Add to Cart Free Shipping


Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.


An up-to-date, comprehensive account of major issues in finite mixture modeling
This volume provides an up-to-date account of the theory and applications of modeling via finite mixture distributions. With an emphasis on the applications of mixture models in both mainstream analysis and other areas such as unsupervised pattern recognition, speech recognition, and medical imaging, the book describes the formulations of the finite mixture approach, details its methodology, discusses aspects of its implementation, and illustrates its application in many common statistical contexts.
Major issues discussed in this book include identifiability problems, actual fitting of finite mixtures through use of the EM algorithm, properties of the maximum likelihood estimators so obtained, assessment of the number of components to be used in the mixture, and the applicability of asymptotic theory in providing a basis for the solutions to some of these problems. The author also considers how the EM algorithm can be scaled to handle the fitting of mixture models to very large databases, as in data mining applications. This comprehensive, practical guide:
* Provides more than 800 references-40% published since 1995
* Includes an appendix listing available mixture software
* Links statistical literature with machine learning and pattern recognition literature
* Contains more than 100 helpful graphs, charts, and tables
Finite Mixture Models is an important resource for both applied and theoretical statisticians as well as for researchers in the many areas in which finite mixture models can be used to analyze data.

Author Biography

GEOFFREY McLACHLAN, PhD, DSc, is Professor in the Department of Mathematics at the University of Queensland, Australia.

DAVID PEEL, PhD, is a research fellow in the Department of Mathematics at the University of Queensland, Australia.

Table of Contents

General Introduction.

ML Fitting of Mixture Models.

Multivariate Normal Mixtures.

Bayesian Approach to Mixture Analysis.

Mixtures with Nonnormal Components.

Assessing the Number of Components in Mixture Models.

Multivariate t Mixtures.

Mixtures of Factor Analyzers.

Fitting Mixture Models to Binned Data.

Mixture Models for Failure-Time Data.

Mixture Analysis of Directional Data.

Variants of the EM Algorithm for Large Databases.

Hidden Markov Models.




Rewards Program

Write a Review