rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780854045822

Fire Retardancy of Polymers

by ; ;
  • ISBN13:

    9780854045822

  • ISBN10:

    0854045821

  • Format: Hardcover
  • Copyright: 2005-05-30
  • Publisher: Royal Society of Chemistry

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $196.00 Save up to $63.70
  • Rent Book $132.30
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-5 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

How To: Textbook Rental

Looking to rent a book? Rent Fire Retardancy of Polymers [ISBN: 9780854045822] for the semester, quarter, and short term or search our site for other textbooks by Le Bras, Michel; Wilkie, Charles A.; Bourbigot, Serge. Renting a textbook can save you up to 90% from the cost of buying.

Summary

The use of polymers is restricted by their flammability - they may indeed initiate or propagate fire. Fire Retardancy of Polymers focuses on mineral additives from either micro- or nano-composites for application in fire retardants. With the use of fire retardant additives containing halogen or phosphorus compounds in decline, the need for other systems is evident. The major materials that are used are alumina trihydrate or magnesium hydroxide which account for more than 50% by weight of the world-wide sales of fire retardants. Recent works have shown that such halogen-free compounds may give enhanced fire retardancy to polymeric materials when used in low levels, alone, or in synergistic mixtures. The corresponding fire performance depends on the dispersion of the mineral filler, with micrometer-scale dispersion leading to the best performances. Specialists discuss these new applications of mineral fillers with particular emphasis on action mechanisms, new materials including textiles, toxicology and hazards. With extensive references, this book provides a comprehensive and up-to-date view of these applications. This book will appeal to professionals, materials scientists and engineers looking for novel ways to eliminate fire hazards and improve flame retardancy of materials, with a special interest in sustainable development.

Table of Contents

Abbreviations xxiv
General Considerations on the Use of Fillers and Nanocomposites
Chapter 1 An Introduction to the Use of Fillers and Nanocomposites in Fire Retardancy (Invited Review)
1(18)
C.A. Wilkie
1.1 Introduction
3(1)
1.2 Characterization of Fire Retardancy of Polymers
3(1)
1.3 Fire Retardant Fillers for Polymers
4(1)
1.4 Nanocomposites
5(8)
1.4.1 Preparation and Modeling of Nanocomposites
7(1)
1.4.2 Organic Clay Modification
8(1)
1.4.3 Determination of the Morphology of Nanocomposites
9(1)
1.4.4 Utility of Nanocomposites
10(1)
1.4.5 Modeling of Fire Retardancy Due to Nanocomposite Formation
10(1)
1.4.6 Mechanisms by which Nanocomposites Enhance the Fire Retardancy of Polymers
10(2)
1.4.7 Fire Retardancy Due to Nanocomposite Formation
12(1)
1.5 Conclusion - the Future of Fillers and Nanocomposites in Fire Retardancy
13(1)
1.6 References
13(6)
Micro-sized Fire Retardant Fillers
Chapter 2 Fire Retardant Fillers for Polymers (Invited Review)
19(23)
P.R. Hornsby and R.N. Rothon
2.1 Fire Retardant Fillers Available
19(3)
2.1.1 Aluminium Hydroxides
20(1)
2.1.2 Magnesium Hydroxide, Mg(OH)2
20(1)
2.1.3 Basic Magnesium Carbonates
21(1)
2.1.4 Boehmite, AlO(OH)
21(1)
2.1.5 Calcium Sulphate Dihydrate, (Gypsum) CaSO4.2H2O
21(1)
2.2 Mechanistic Studies
22(5)
2.2.1 Flame Retardancy
22(1)
2.2.1.1 Thermal Effects from Filler
23(1)
2.2.1.2 Dilution of Combustible Polymer
24(1)
2.2.1.3 Filler/Polymer Interactions
25(1)
2.2.1.4 Vapour Phase Action
25(1)
2.2.1.5 Effects of Filler Particle Size and Morphology
26(1)
2.2.2 Smoke Suppression
26(1)
2.2.3 Incandescence
27(1)
2.3 Synergists for Hydrated Fillers
27(4)
2.4 Processing and Considerations on Mechanical Property
31(5)
2.4.1 Rheological Issues
31(3)
2.4.2 Enhancement of Mechanical Properties
34(1)
2.4.3 Alternative Processing Strategies for Hydrated Fillers
35(1)
2.5 Conclusions
36(1)
2.6 References
37(5)
Chapter 3 Lamellar Double Hydroxides/Polymer Composites: A New Class of Fire Retardant Materials
42(12)
J. Lefebvre, M. Le Bras and S. Bourbigot
3.1 Introduction
42(1)
3.2 Description of LDHs materials
43(1)
3.3 Synthesis of LDHs/Polymer nanocomposites
44(1)
3.3.1 Intercalation of monomer molecules followed by "in situ" polymerization
44(1)
3.3.2 Direct Intercalation of Extended Polymer Chains Between Ldhs Layers
44(1)
3.3.3 Transformation of Host Material into a Colloid System and Precipitation in the Presence of the Polymer
44(1)
3.4 Mechanical properties of LDHs/Polymer composites
45(2)
3.5 Thermal Stability of LDHs/Polymer Nanocomposites
47(3)
3.6 Flame Resistance of LDHs/Polymer Composites
50(1)
3.7 Conclusions
51(1)
3.8 References
52(2)
Chapter 4 Effect of a Small Amount of Flame Retardant on the Combustion of PC, PBT and PET
54(14)
T. Ohkawa, T. Ishikawa and K. Takeda
4.1 Introduction
54(1)
4.2 Experimental
55(1)
4.3 Results
56(4)
4.3.1 Combustion Data of Blends with PPFBS, PTFMS and PPh
56(2)
4.3.2 Combustion of Blends with Metal Oxides, Red Phosphorous
58(1)
4.3.3 TGA and Elemental Analysis of PC
59(1)
4.4 Discussion
60(6)
4.4.1 Degradation at Different Temperatures
61(1)
4.4.2 Degradation Paths of Neat-PC and Blends
61(1)
4.4.3 Estimated Char Structures
62(1)
4.4.4 Degradation Routes and Flame Retardancy
63(3)
4.5 Acknowledgement
66(1)
4.6 References
66(2)
Chapter 5 Intumescent Silicates: Synthesis, Characterization and Fire Protective Effect
68(13)
C. Pélégris, M. Rivenet and M. Traisnel
5.1 Introduction
68(1)
5.2 Silicate Solution Chemistry
69(1)
5.3 Experimental
70(2)
5.3.1 Sample Preparation
70(1)
5.3.1.1 Aqueous Silicates
70(1)
5.3.1.2 Dried Silicates
71(1)
5.3.2 Blending of Dried Silicates Powders and Ethyl Vinyl Acetate (EVA-19%) Polymer
71(1)
5.3.3 Characterisation
71(1)
5.3.3.1 Intumescence Test
71(1)
5.3.3.2 TGA Studies
71(1)
5.3.3.3 Lixiviation Test
72(1)
5.3.3.4 Infrared Spectroscopy
72(1)
5.3.3.5 Fire Protective Effect
72(1)
5.4 Results and Discussion
72(5)
5.5 Conclusion
77(1)
5.6 References
78(3)
Use of Nanocomposite Materials
Chapter 6 Flammability of Nanocomposites: Effects of the Shape of Nanoparticles (Invited Review)
81(19)
T. Kashiwagi
6.1 Introduction
81(1)
6.2 Flammability Measurement
82(1)
6.3 Polymer-Nanosilica Nanocomposites
82(4)
6.4 Polymer-Clay Nanocomposites
86(5)
6.5 Polymer-Carbon Nanotube Nanocomposites
91(4)
6.6 Discussion
95(2)
6.7 Conclusion
97(1)
6.6 Acknowledgement
98(1)
6.7 References
99(1)
Chapter 7 Thermal Degradation and Combustibility of Polypropylene Filled with Magnesium Hydroxide Micro-filler and Polypropylene Nano-filled Aluminosilicate Composite
100(14)
S.M. Lomakin, G.E. Zaikov and E.V. Koverzanova
7.1 Introduction
100(2)
7.2 Experimental
102(1)
7.2.1 Materials
102(1)
7.2.2 Thermal Analysis
102(1)
7.2.3 Gas Chromatography/Mass Spectrometry Analysis (GC-MS)
102(1)
7.2.4 Clay and Composite Characterization
103(1)
7.3 Results and Discussion
103(10)
7.4 References
113(1)
Chapter 8 Effect of the Processing Conditions on the Fire Retardant and Thermo-mechanical Properties of PP-Clay Nanocomposites
114(12)
A. Bendaoudi, S. Duquesne, C. Jama, M. Le Bras, R. Delobel, P. Recourt, J.-M. Gloaguen, J.-M. Lefebvre and A. Addad
8.1 Introduction
114(1)
8.2 Experimental
115(2)
8.2.1 Materials
115(1)
8.2.2 Cone Calorimetry
116(1)
8.2.3 Thermogravimetry
116(1)
8.2.4 Dynamic Mechanical Analysis
117(1)
8.2.5 Characterization of Nanocomposites
117(1)
8.2.6 Experimental Design
117(1)
8.3 Results and Discussion
117(6)
8.3.1 Fire Retardant Performance of PP Nanocomposites
117(2)
8.3.2 Thermal Stability of PP/PP-g-MA/20A Nanocomposites
119(2)
8.3.3 Dynamic Thermo-Mechanical Properties of PP Nanocomposites
121(1)
8.3.4 Characterization of PP Nanocomposites
121(2)
8.4 Conclusion
123(1)
8.5 References
124(2)
Chapter 9 Fire Retardancy of Polystyrene - Hectorite Nanocomposite
126(13)
D. Wang, B.N. Jang, S. Su, J. Zhang, X. Zheng, G. Chigwada, D.D. Jiang, and C.A. Wilkie
9.1 Introduction
126(1)
9.2 Experimental
127(2)
9.2.1 Materials
127(1)
9.2.2 Organic Modification of Hectorite
128(1)
9.2.3 Preparation of Nanocomposites
128(1)
9.2.4 Instrumentation
128(1)
9.3 Results and Discussions
129(7)
9.3.1 X-ray Diffraction
129(1)
9.3.2 Transmission Electron Microscopy
129(2)
9.3.3 Thermogravimetric Analysis
131(1)
9.3.4 Cone Calorimetry
131(5)
9.4 Conclusions
136(1)
9.5 Acknowledgement
137(1)
9.6 References
137(2)
Chapter 10 Pyrolysis and Flammability of Polyurethane - Organophilic Clay Nanocomposite
139(8)
G.E. Zaikov, S.M. Lomakin and RA. Sheptalin
10.1 Introduction
139(1)
10.2 Experimental
140(2)
10.2.1 Materials
140(1)
10.2.2 Preparation of Organophilic Montmorillonite (OM)
140(1)
10.2.3 Synthesis of Propylene Oxide-OM (PO-OM)
140(1)
10.2.4 Synthesis of Polyurethane-Organophilic Montmorillonite Nanocomposite (PU-OM)
140(1)
10.2.5 XRD Characterization
141(1)
10.2.6 Pyrolysis
141(1)
10.2.7 Gas Chromatography/Mass Spectrometry (GC-MS) Analysis
141(1)
10.2.8 Combustion Tests
142(1)
10.3 Results and Discussion
142(4)
10.4 References
146(1)
Chapter 11 Thermal Degradation Behaviour Of Flame-Retardant Unsaturated Polyester Resins Incorporating Functionalised Nanoclays
147(14)
B.K Kandola, S. Nazare and A.R. Horrocks
11.1 Introduction
147(1)
11.2 Experimental
148(1)
11.2.1 Materials
148(1)
11.2.2 Preparation of Polyester-Clay Nanocomposites
149(1)
11.2.3 Equipment
149(1)
11.3 Results and Discussion
149(10)
11.3.1 Thermal Degradation of Clays
150(3)
11.3.2 Thermal Degradation of Resin
153(1)
11.3.3 Effect of Different Clays on Thermal Degradation of Resin
153(2)
11.3.4 Effect of Flame Retardants on Thermal Degradation of Polyester Resin
155(1)
11.3.5 Effect of Clays on Thermal Degradation of Flame Retarded Resin
156(3)
11.4 Conclusions
159(1)
11.5 Acknowledgements
159(1)
11.6 References
159(2)
Chapter 12 Comparative Study of Nano-effect on Fire Retardancy of Polymer-Graphite Oxide Nanocomposites
161(16)
J. Wang and Z. Han
12.1 Introduction
161(1)
12.2 Experimental
162(1)
12.2.1 Sample Preparation
162(1)
12.2.2 Characterization Techniques
162(1)
12.3 Results and Discussion
162(12)
12.3.1 Morphological Structure
162(1)
12.3.2 Fire Retardancy
163(4)
12.3.3 Mechanistic Study (TGA/XPS)
167(7)
12.4 Conclusions
174(1)
12.5 References
175(2)
Chapter 13 Styrene-Acrylonitrile Copolymer Montmorillonite Nanocomposite: Processing, Characterization and Flammability
177(12)
J.W. Gilman, S. Bellayer, S. Bourbigot, H. Stretz and D.R. Paul
13.1 Introduction
177(1)
13.2 Experimentala
178(2)
13.2.1 Preparation of Nanocomposites
178(1)
13.2.2 NMR Spectroscopy
179(1)
13.2.3 Transmission Electron Microscopy
179(1)
13.2.4 Tensile Properties
180(1)
13.2.5 Cone Calorimetry by Mass Loss Calorimeter
180(1)
13.3 Results and Discussion
180(5)
13.3.1 Characterization by XRD and TEM
180(1)
13.3.2 T1H of Nanocomposite
181(2)
13.3.3 Tensile Properties
183(1)
13.3.4 Flammability Properties
184(1)
13.4 Conclusion
185(1)
13.5 References
185(4)
Micro-sized Fire Retarding Mineral Fillers
Chapter 14 Polyhedral Oligomeric Silsesquioxanes: Application to Flame Retardant Textiles (Invited Paper)
189(13)
S. Bourbigot , M. Le Bras, X. Flambard, M. Rochery, E. Devaux and J.D. Lichtenhan
14.1 Introduction
189(3)
14.2 Experimental
192(3)
14.2.1 Raw Materials
192(1)
14.2.2 Processing of Nanocomposite Textiles
193(1)
14.2.2.1 PP-POSS Multifilament Yarns
193(1)
14.2.2.2 Knitted Fabric of PP-POSS Multifilament Yarns
193(1)
14.2.2.3 Synthesis of Polyurethane Nanocomposite
193(1)
14.2.2.4 Polyester Fabric Coated with Polyurethane Nanocomposite
193(1)
14.2.3 Solid State NMR
194(1)
14.2.4 Thermogravimetric Analysis
194(1)
14.2.5 Cone Calorimetry by Oxygen Consumption
194(1)
14.3 Results and Discussion
195(4)
14.3.1 PP-POSS Multifilament Yarns
195(2)
14.3.2 TPU-POSS Coating
197(2)
14.4 Conclusion
199(1)
14.5 Acknowledgements
200(1)
14.6 References
200(2)
Chapter 15 Octaisobutyl POSS Thermal Degradation
202(21)
A. Fina, D. Tabuani, A. Frache, E. Boccaleri and G. Camino
15.1 Introduction
202(2)
15.2 Experimental
204(1)
15.3 Results and Discussion
205(13)
15.3.1 Thermal Degradation in Inert Conditions
205(5)
15.3.2 Thermal Degradation in Oxidative Conditions
210(8)
15.4 Conclusions
218(1)
15.5 Acknowledgements
219(1)
15.6 References
219(4)
Mineral Fillers in Synergistic Systems
Chapter 16 Interactions between Nanoclays and Flame Retardant Additives in Polyamide 6, and Polyamide 6.6 Films (Invited Paper)
223(16)
A.R. Horrocks, B.K. Kandola and S.A. Padbury
16.1 Introduction
223(1)
16.2 Experimental
224(1)
16.2.1 Materials
224(1)
16.2.2 Film Preparation
225(1)
16.2.3 Flammability Measurement
225(1)
16.2.4 Thermal Analysis
225(1)
16.3 Results and Discussion
225(10)
16.3.1 Thermal Analytical Behaviour: Nanocomposite Character
225(4)
16.3.2 Limiting Oxygen Index Measurements
229(1)
16.3.2.1 Polyamide 6.6
229(1)
16.3.2.2 Polyamide 6
233(2)
16.4 A Simple Model for Nanoclay-Fr Interation
235(2)
16.5 References
237(2)
Chapter 17 Use of Clay-Nanocomposite Matrixes in Fire Retardant Polyolefin-based Intumescent Systems
239(9)
S. Duquesne, S. Bourbigot, M. Le Bras, C. Jama and R. Delobel
17.1 Introduction
239(1)
17.2 Experimental
240(2)
17.2.1 Materials
240(1)
17.2.1.1 EVA, Nanocomposite
240(1)
17.2.1.2 PP Nanocomposite
240(1)
17.2.1.3 Intumescent Systems
241(1)
17.2.2 Fire Testing
241(1)
17.2.2.1 Cone Calorimeter
241(1)
17.2.2.2 Limiting Oxygen Index
241(1)
17.2.2.3 UL-94
242(1)
17.3 Results and Discussion
242(4)
17.3.1 Fire Retardant Performance of EVA Based Systems
242(1)
17.3.2 Fire Retardant Performance of PP Based Systems
243(3)
17.4 Conclusion
246(1)
17.5 Acknowledgement
246(1)
17.6 References
246(2)
Chapter 18 Effect of Hydroxides on Fire Retardance Mechanism of Intumescent EVA Composition
248(16)
G. Camino, A. Riva, D. Vizzini, A. Castrovinci, P. Amigouët and P. Bras Pereira
18.1 Introduction
248(1)
18.2 Experimental
249(2)
18.2.1 Materials
249(1)
18.2.2 Combined Thermogravimetry-infrared-evolved Gas Analysis (TGA-FTIR-EGA)
249(1)
18.2.3 Expansion Measurements
250(1)
18.2.4 Oxygen Consumption Calorimetry (Cone Calorimeter)
250(1)
18.3 Results and Discussion
251(11)
18.3.1 Flammability Behaviour
251(1)
18.3.2 Thermal Degradation of APP in the Presence of MH or ATH
252(1)
18.3.2.1 ATH and MH
253(1)
18.3.2.2 APP
253(1)
18.3.2.3 APP-MH mixtures
254(1)
18.3.2.4 APP-ATH mixtures
257(2)
18.3.3 Expansion Behaviour of Intumescent Mixtures Containing MH
259(3)
18.4 Conclusions
262(1)
18.5 References
263(1)
Chapter 19 Barrier Effects for the Fire Retardancy of Polymers
264(12)
B. Schartel, M. Bartholmai and U. Braun
19.1 Introduction
264(1)
19.2 Experimental
265(1)
19.3 Results and discussion
266(7)
19.3.1 Role of Barrier Effects and Residue in Char Forming Systems
266(3)
19.3.2 The Effect of Inorganic Residue in Contrast to Char
269(2)
19.3.3 The Role of Insulation Properties in Contrast to Mass Transfer Barrier
271(2)
19.4 Conclusion
273(1)
19.5 Acknowledgements
274(1)
19.6 References
274(2)
Chapter 20 Plasma Assisted Process for Fire Properties Improvement of Polyamide and Clay Nanocomposite Reinforced Polyamide: A Scale-up Study
276(15)
A. Quédé, B. Mutel, C. Jama, P. Goudmand, M. Le Bras, O. Dessaux and R Delobel
20.1 Introduction
276(1)
20.2 Experimental
277(2)
20.2.1 Reactor
277(1)
20.2.2 Characterization Techniques
278(1)
20.2.3 Samples
279(1)
20.3 Results
279(8)
20.3.1 Influence of dis on Both the Deposition Rate and The Radial Thickness Homogeneity of Films Deposited in the L-reactor
279(1)
20.3.2 Comparison of Deposition Rate, Radial Homogeneity and Specific Gravity of the Films Obtained with the Two Reactors
280(1)
20.3.3 FTIR Study: Comparison of the Chemical Structure of Films Obtained with the Two Reactors
280(1)
20.3.4 SEM Study: Comparison of the Morphology of Films Obtained with the Two Reactors
280(2)
20.3.5 Flame Retardant Properties
282(1)
20.3.5.1 LOI Tests
282(1)
20.3.5.2 Cone Calorimeter Measurements
285(2)
20.4 Conclusions
287(2)
20.5 Acknowledgments
289(1)
20.6 References
289(2)
Chapter 21 Fire Retardant Polypropylene/flax Blends: Use of Hydroxides
291(11)
M. Fois, M. Grisel, M. Le Bras, S. Duquesne and F. Poutch
21.1 Introduction
291(2)
21.2 Experimental
293(1)
21.2.1 Materials
293(1)
21.2.2 Fire Testings
293(1)
21.2.3 Thermogravimetric Analyses
293(1)
21.2.4 Mechanical Characterisations
294(1)
21.3 Results and Discussion
294(5)
21.3.1 Fire Performances
294(4)
21.3.2 Mechanical Properties
298(1)
21.4 Conclusion
299(1)
21.5 References
299(3)
Chapter 22 Intumescence in Ethylene-Vinyl Acetate Copolymer filled with Magnesium Hydroxide and Organoclays
302(11)
L. Ferry, P. Gaudon, E. Leroy and J.-M. Lopez Cuesta
22.1 Introduction
302(1)
22.2 Experimental
303(2)
22.2.1 Materials
303(1)
22.2.2 Processing
303(1)
22.2.3 Experimental Techniques
304(1)
22.3 Results and Discussion
305(7)
22.3.1 Structural Characterization
305(1)
22.3.2 Thermal Analysis
306(1)
22.3.3 Fire Properties
307(1)
22.3.3.1 Epiradiateur Test
307(1)
22.3.3.2 LOI Test
308(1)
22.3.3.3 Cone Calorimeter
309(3)
22.4 Conclusions
312(1)
22.5 References
312(1)
Chapter 23 Spent Oil Refinery Catalyst: A Synergistic Agent in Intumescent Formulations for Polyethylenic Materials
313(14)
L.R. de Moura Estevão, R.S.V. Nascimento, M. Le Bras and R. Delobel
23.1 Introduction
313(1)
23.2 Protection Via Intumescence
314(1)
23.2.1 Intumescent Formulations
315(1)
23.3 Synergistic Agents
315(1)
23.4 Oil Cracking Catalyst
315(2)
23.4.1 The FCC Process and Catalyst - Basic Concepts
316(1)
23.4.2 Chemical Composition and Physical Properties of the Spent FCC Catalyst
316(1)
23.5 Effect of the Catalyst on Fire Performance of Intumescent Formulations: Are the Additives in Synergy?
317(7)
23.5.1 Effect of Catalyst Loading
318(1)
23.5.2 Effect of the Catalyst's Particle Size
319(1)
23.5.3 Effect of the Catalyst's Components on Flame Retardancy
319(2)
23.5.4 Spent Catalyst and the Intumescent Layer
321(3)
23.6 Conclusion
324(1)
23.7 Acknowledgements
324(1)
23.8 References
324(3)
Chapter 24 Zinc Borates as Synergists for Flame Retarded Polymers (Invited Paper)
327(9)
S. Bourbigot, M. Le Bras and S. Duquesne
24.1 Introduction
327(1)
24.2 Zinc Borates in Eva-Metal Hydroxides Systems
328(4)
24.3 Zinc Borates in PP-Based Intumescent Systems
332(2)
24.4 Conclusions
334(1)
24.5 References
334(2)
Chapter 25 Fire Retardancy of Engineering Polymer Composites
336(11)
P. Anna, S. Matkó, G. Marosi, G. Nagy, X. Alméras and M. Le Bras
25.1 Introduction
336(1)
25.2 Experimental
337(1)
25.2.1 Components of Polypropylene Compounds
337(1)
25.2.2 Components of 3P Composites
337(1)
25.2.3 Compounding of Thermoplastic Composites
337(1)
25.3 Results and Discussion
338(7)
25.3.1 Intumescent PP Compounds Containing PA 6 Charring Component and Talc as Melt Rheology Controller
338(3)
25.3.2 Intumescent PP Compounds Containing PA 6 Charring Component and Nano-Clay as Melt Rheology Controller
341(1)
25.3.3 Flame Retarded and Basalt Fibre Reinforced Thermosetting Polymer (3P) Composites
342(3)
25.4 Conclusion
345(1)
25.5 Acknowledgement
345(1)
25.6 References
345(2)
Chapter 26 Flame Retardant Mechanisms Facilitating Safety in Transportation
347(16)
G. Marosi, S. Keszei, A. Márton, A. Szép, M. Le Bras, R. Delobel and P. Hornsby
26.1 Introduction
347(3)
26.2 Experimental
350(1)
26.2.1 Materials
350(1)
26.2.2 Methods
351(1)
26.3 Results and Discussion
351(7)
26.3.1 Development of Nanocomposites for Forming Internal Panels
351(2)
26.3.2 New Mechanisms for Delivering FR Components to the Surface
353(3)
26.3.3 Development of Flame Retarded Noise Insulating Sheets
356(2)
26.4 Conclusions
358(1)
26.5 Acknowledgement
359(1)
26.6 References
359(4)
Effect of the Addition of Mineral Fillers and Additives on the Toxicity of Fire Effluents from Polymers
Chapter 27 Comparison of the Degradation Products of Polyurethane and Polyurethane-Organophilic Clay Nanocomposite - A Toxicological Approach (Invited Paper)
363(9)
G.E. Zaikov, S.M. Lomakin and R.A. Sheptalin
27.1 Ecological Issue of Isocyanates and Pyrolysis of Polyurethane Nanocomposite
363(1)
27.2 Occupational Exposure
364(1)
27.3 Health Effects
365(5)
27.3.1 GC-MS Pyrolysis
365(5)
27.4 Conclusion
370(1)
27.5 References
370(2)
Chapter 28 Mechanisms of Smoke and CO Suppression from EVA Composites
372(14)
T.R. Hull, C.L. Wills, T. Artingstall, D. Price and G.J. Milnes
28.1 Introduction
372(4)
28.2 Experimental
376(1)
28.2.1 Materials
376(1)
28.2.2 Burning Behaviour
376(1)
28.3 Results
377(5)
28.3.1 Correlation of Physical Fire Models
377(5)
28.3.2 Smoke
382(1)
28.4 Conclusions
382(2)
28.5 Acknowledgements
384(1)
28.6 References
384(2)
Chapter 29 Products of Incomplete Combustion from Fire Studies in the Purser Furnace
386(13)
C.L. Wills, J. Arotsky, T.R. Hull, D. Price, D.A. Purser and J. Purser
29.1 Introduction
386(1)
29.2 Experimental
387(2)
29.2.1 Materials
387(1)
29.2.2 Apparatus
387(2)
29.2.3 Secondary Oxidiser
389(1)
29.3 Results
389(5)
29.3.1 Mass Loss
389(1)
29.3.2 Effluent Oxygen
390(1)
29.3.3 Carbon Dioxide
390(1)
29.3.4 CO2/CO Ratio
391(1)
29.3.5 Secondary Oxidiser
392(1)
29.3.6 CO Yield
393(1)
29.3.7 Smoke
394(1)
29.4 Discussion
394(3)
29.5 Conclusions
397(1)
29.6 Acknowledgements
397(1)
29.7 References
397(2)
Chapter 30 Improved and Cost-efficient Brominated Fire Retardant Systems for Plastics and Textiles by Reducing or Eliminating Antimony Trioxide
399(13)
R. Borms, R. Wilmer, M. Peled, N. Kornberg, R. Mazor, Y. Bar Yaakov, J. Scheinert and P. Georlette
30.1 Introduction
399(1)
30.2 Polypropylene (PP)
399(2)
30.3 High Impact Polystyrene (HIPS)
401(2)
30.4 Styrenic Copolymers
403(1)
30.5 Polyamide
404(2)
30.6 Polycarbonate (PC) and its Alloys with ABS
406(2)
30.7 Textile Back-Coating
408(1)
30.8 Conclusion
409(1)
30.9 Acknowledgement
409(1)
30.10 References
409(3)
Subject Index 412

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program