9780134712826

Fluid Mechanics for Chemical Engineers with Microfluidics, CFD, and COMSOL Multiphysics 5

by
  • ISBN13:

    9780134712826

  • ISBN10:

    013471282X

  • Edition: 3rd
  • Format: Paperback
  • Copyright: 2017-07-31
  • Publisher: Prentice Hall

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
  • We Buy This Book Back!
    In-Store Credit: $39.90
    Check/Direct Deposit: $38.00
    PayPal: $38.00
List Price: $160.00 Save up to $118.26
  • Rent Book $41.74
    Add to Cart Free Shipping

    TERM
    PRICE
    DUE
    CURRENTLY AVAILABLE, USUALLY SHIPS IN 24-48 HOURS

Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Summary

The Chemical Engineer’s Practical Guide to Fluid Mechanics: Now Includes COMSOL Multiphysics 5

 

Since most chemical processing applications are conducted either partially or totally in the fluid phase, chemical engineers need mastery of fluid mechanics. Such knowledge is especially valuable in the biochemical, chemical, energy, fermentation, materials, mining, petroleum, pharmaceuticals, polymer, and waste-processing industries.

 

Fluid Mechanics for Chemical Engineers: with Microfluidics, CFD, and COMSOL Multiphysics 5, Third Edition, systematically introduces fluid mechanics from the perspective of the chemical engineer who must understand actual physical behavior and solve real-world problems. Building on the book that earned Choice Magazine’s Outstanding Academic Title award, this edition also gives a comprehensive introduction to the popular COMSOL Multiphysics 5 software.

 

This third edition contains extensive coverage of both microfluidics and computational fluid dynamics, systematically demonstrating CFD through detailed examples using COMSOL Multiphysics 5 and ANSYS Fluent. The chapter on turbulence now presents valuable CFD techniques to investigate practical situations such as turbulent mixing and recirculating flows.

 

Part I offers a clear, succinct, easy-to-follow introduction to macroscopic fluid mechanics, including physical properties; hydrostatics; basic rate laws; and fundamental principles of flow through equipment. Part II turns to microscopic fluid mechanics:

  • Differential equations of fluid mechanics
  • Viscous-flow problems, some including polymer processing
  • Laplace’s equation; irrotational and porous-media flows
  • Nearly unidirectional flows, from boundary layers to lubrication, calendering, and thin-film applications
  • Turbulent flows, showing how the k-ε method extends conventional mixing-length theory
  • Bubble motion, two-phase flow, and fluidization
  • Non-Newtonian fluids, including inelastic and viscoelastic fluids
  • Microfluidics and electrokinetic flow effects, including electroosmosis, electrophoresis, streaming potentials, and electroosmotic switching
  • Computational fluid mechanics with ANSYS Fluent and COMSOL Multiphysics

Nearly 100 completely worked practical examples include 12 new COMSOL 5 examples: boundary layer flow, non-Newtonian flow, jet flow, die flow, lubrication, momentum diffusion, turbulent flow, and others. More than 300 end-of-chapter problems of varying complexity are presented, including several from University of Cambridge exams. The author covers all material needed for the fluid mechanics portion of the professional engineer’s exam.

 

The author’s website (fmche.engin.umich.edu) provides additional notes, problem-solving tips, and errata.

 

Register your product at informit.com/register for convenient access to downloads, updates, and corrections as they become available.

Author Biography

James O. Wilkes is Professor Emeritus of Chemical Engineering at the University of Michigan, where he served as department chairman and assistant dean for admissions. From 1989 to 1992, he was an Arthur F. Thurnau Professor. Wilkes coauthored Applied Numerical Methods (Wiley, 1969) and Digital Computing and Numerical Methods (Wiley, 1973). He received his bachelor s degree from the University of Cambridge and his M.S. and Ph.D. in chemical engineering from the University of Michigan. His research interests involve numerical methods for solving a wide variety of engineering problems.

Stacy G. Birmingham is the dean of the Albert A. Hopeman, Jr., School of Science, Engineering, and Mathematics at Grove City College and is a professor of mechanical engineering. She received her B.S., M.S., and Ph.D. in chemical engineering from Carnegie Mellon University. She began her academic career at the University of Michigan, where she held appointments in both the chemical engineering and macromolecular science & engineering departments. Notable awards include the Presidential Young Investigator Award from the National Science Foundation and the 38E Award for Teaching and Service from the University of Michigan.

Table of Contents

Preface
1. Introduction to Fluid Mechanics
2. Mass, Energy, and Momentum Balances
3. Fluid Friction in Pipes
4. Flow in Chemical Engineering Equipment

 

Part II. Microscopic Fluid Mechanics
5. Differential Equations of Fluid Mechanics
6. Solution of Viscous-Flow Problems
7. Laplace’s Equation, Irrotational and Porous-Media Flows
8. Boundary-Layer and Other Nearly Unidirectional Flows
9. Turbulent Flow
10. Bubble Motion, Two-Phase Flow, and Fluidization
11. Non-Newtonian Fluids
12. Microfluidics and Electrokinetic Flow Effects
13. An Introduction to Computational Fluid Dynamics and Flowlab
14. COMSOL (FEMLAB) Multiphysics for Updated Solving Fluid Mechanics Problems


Appendix A: Useful Mathematical Relationships
Appendix B: Answers to the True/False Assertions
Appendix C: Some Vector and Tensor Operations

Rewards Program

Write a Review