did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780072921946

Foundations of Materials Science and Engineering

by
  • ISBN13:

    9780072921946

  • ISBN10:

    0072921943

  • Edition: 3rd
  • Format: Hardcover
  • Copyright: 2003-06-25
  • Publisher: MCG (Manual)
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $152.30

Summary

Smith's Foundations of Materials Science and Engineering, 3/e provides an eminently readable and understandable overview of engineering materials for undergraduate students. The author has carefully updated each chapter to reflect new technologies and materials types being used in industry. Through concise explanations, numerous worked-out examples, a wealth of illustrations & photos, and a brand new set of online resources, the new edition of Smith provides the most student-friendly introduction to the science & engineering of materials.The third edition features expanded chapter problem sets which now include new Design-Oriented Problems involving materials selection factors. Chapter Openers, also new to this edition, immediately engage students in each chapter's content through a highlighted, real-world application.The new Online Learning Center website will contain extensive student and instructor resources.

Table of Contents

Preface xix
CHAPTER 1 Introduction to Materials Science and Engineering 1(18)
1.1 Materials and Engineering
2(3)
1.2 Materials Science and Engineering
5(1)
1.3 Types of Materials
6(5)
1.3.1 Metallic Materials
6(2)
1.3.2 Polymeric (Plastic) Materials
8(1)
1.3.3 Ceramic Materials
8(1)
1.3.4 Composite Materials
9(1)
1.3.5 Electronic Materials
10(1)
1.4 Competition Among Materials
11(2)
1.5 Future Trends in Materials Usage
13(6)
1.5.1 Metallic Materials
13(1)
1.5.2 Polymeric (Plastic) Materials
13(1)
1.5.3 Ceramic Materials
14(1)
1.5.4 Composite Materials
15(1)
1.5.5 Electronic Materials
15(4)
CHAPTER 2 Atomic Structure and Bonding 19(48)
2.1 The Structure of Atoms
20(1)
2.2 Atomic Numbers and Atomic Masses
20(4)
2.2.1 Atomic Numbers
20(2)
2.2.2 Atomic Masses
22(2)
2.3 The Electronic Structure of Atoms
24(12)
2.3.1 The Hydrogen Atom
24(4)
2.3.2 Quantum Numbers of Electrons of Atoms
28(1)
2.3.3 Electronic Structure of Multielectron Atoms
29(3)
2.3.4 Electronic Structure and Chemical Reactivity
32(4)
2.4 Types of Atomic and Molecular Bonds
36(1)
2.4.1 Primary Atomic Bonds
37(1)
2.4.2 Secondary Atomic and Molecular Bonds
37(1)
2.5 Ionic Bonding
37(7)
2.5.1 Ionic Bonding in General
37(1)
2.5.2 Interionic Forces for an Ion Pair
38(3)
2.5.3 Interionic Energies for an Ion Pair
41(1)
2.5.4 Ion Arrangements in Ionic Solids
42(1)
2.5.5 Bonding Energies of Ionic Solids
43(1)
2.6 Covalent Bonding
44(6)
2.6.1 Covalent Bonding in the Hydrogen Molecule
44(1)
2.6.2 Covalent Bonding in Other Diatomic Molecules
45(1)
2.6.3 Covalent Bonding by Carbon
46(2)
2.6.4 Covalent Bonding in Carbon-Containing Molecules
48(1)
2.6.5 Benzene
48(2)
2.7 Metallic Bonding
50(4)
2.8 Secondary Bonding
54(3)
2.8.1 Fluctuating Dipoles
55(1)
2.8.2 Permanent Dipoles
56(1)
2.9 Mixed Bonding
57(10)
2.9.1 Ionic-Covalent Mixed Bonding
57(1)
2.9.2 Metallic-Covalent Mixed Bonding
58(1)
2.9.3 Metallic-Ionic Mixed Bonding
59(8)
CHAPTER 3 Crystal Structures and Crystal Geometry 67(50)
3.1 The Space Lattice and Unit Cells
68(1)
3.2 Crystal Systems and Bravais Lattices
69(2)
3.3 Principal Metallic Crystal Structures
71(7)
3.3.1 Body-Centered Cubic (BCC)Crystal Structure
72(3)
3.3.2 Face-Centered Cubic (FCC) Crystal Structure
75(1)
3.3.3 Hexagonal Close-Packed (HCP) Crystal Structure
76(2)
3.4 Atom Positions in Cubic Unit Cells
78(1)
3.5 Directions in Cubic Unit Cells
78(4)
3.6 Miller Indices for Crystallographic PLanes in Cubic Unit Cells
82(5)
3.7 Crystallographic Planes and Directions in Hexagonal Unit Cells
87(3)
3.7.1 Indices for Crystal Planes in HCP Unit Cells
87(1)
3.7.2 Direction Indices in HCP Unit Cells
88(2)
3.8 Comparison of FCC, HCP, and BCC Crystal Structures
90(2)
3.8.1 Face-Centered Cubic and Hexagonal Close-Packed Crystal Structures
90(2)
3.8.2 Body-Centered Cubic Crystal Structure
92(1)
3.9 Volume, Planar, and Linear Density Unit-Cell Calculations
92(4)
3.9.1 Volume Density
92(1)
3.9.2 Planar Atomic Density
93(2)
3.9.3 Linear Atomic Density
95(1)
3.10 Polymorphism or Allotropy
96(1)
3.11 Crystal Structure Analysis
97(20)
3.11.1 X-ray Sources
98(1)
3.11.2 X-ray Diffraction
99(2)
3.11.3 X-ray Diffraction Analysis of Crystal Structures
101(16)
CHAPTER 4 Solidification, Crystallin Imperfections, and Diffusion in Solids 117(64)
4.1 Solidification of Metals
118(10)
4.1.1 The Formation of Stable Nuclei in Liquid Metals
118(7)
4.1.2 Growth of Crystals in Liquid Metal and Formation of a Grain Structure
125(1)
4.1.3 Grain Structure of Industrial Castings
125(3)
4.2 Solidification of Single Crystals
128(3)
4.3 Metallic Solid Solutions
131(5)
4.3.1 Substitutional Solid Solutions
131(3)
4.3.2 Interstitial Solid Solutions
134(2)
4.4 Crystalline Imperfections
136(13)
4.4.1 Point Defects
136(2)
4.4.2 Line Defects (Dislocations)
138(3)
4.4.3 Grain Boundaries (Planar Defects)
141(3)
4.4.4 Grain Size
144(3)
4.4.5 The Scanning Electron Microscope
147(2)
4.5 Rate Processes in Solids
149(5)
4.6 Atomic Diffusion in Solids
154(7)
4.6.1 Diffusion in Solids in General
154(1)
4.6.2 Diffusion Mechanisms
154(3)
4.6.3 Steady-State Diffusion
157(2)
4.6.4 Non-Steady-State Diffusion
159(2)
4.7 Industrial Applications of Diffusion Processes
161(7)
4.7.1 Case Hardening of Steel by Gas Carburizing
161(5)
4.7.2 Impurity Diffusion into Silicon Wafers for Integrated Circuits
166(2)
4.8 Effect of Temperature on Diffusion in Solids
168(13)
CHAPTER 5 Mechanical Properties of Metals 1 181(56)
5.1 The Processing of Metals and Alloys
182(11)
5.1.1 The Casting of Metals and Alloys
182(2)
5.1.2 Hot and Cold Rolling of Metals and Alloys
184(4)
5.1.3 Extrusion of Metals and Alloys
188(2)
5.1.4 Forging
190(1)
5.1.5 Other Metal-Forming Processes
191(2)
5.2 Stress and Strain in Metals
193(5)
5.2.1 Elastic and Plastic Deformation
193(1)
5.2.2 Engineering Stress and Engineering Strain
194(3)
5.2.3 Poisson's Ratio
197(1)
5.2.4 Shear Stress and Shear Strain
197(1)
5.3 The Tensile Test and the Engineering Stress-Strain Diagram
198(10)
5.3.1 Mechanical Property Data Obtained from the Tensile Test and the Engineering Stress-Strain Diagram
201(5)
5.3.2 Comparison of Engineering Stress-Strain Curves for Selected Alloys
206(1)
5.3.3 True Stress, True Strain
206(2)
5.4 Hardness and Hardness Testing
208(2)
5.5 Plastic Deformation of Metal Single Crystals
210(13)
5.5.1 Slipbands and Slip Lines on the Surface of Metal Crystals
210(3)
5.5.2 Plastic Deformation in Metal Crystals by the Slip Mechanism
213(2)
5.5.3 Slip Systems
215(1)
5.5.4 Critical Resolved Shear Stress for Metal Single Crystals
216(2)
5.5.5 Schmid's Law
218(3)
5.5.6 Twinning
221(2)
5.6 Plastic Deformation of Polycrystalline Metals
223(4)
5.6.1 Effect of Grain Boundaries on the Strength of Metals
223(1)
5.6.2 Effect of Plastic Deformation on Grain Shape and Dislocation Arrangements
224(2)
5.6.3 Effect of Cold Plastic Deformation on Increasing the Strength of Metals
226(1)
5.7 Solid-Solution Strengthening of Metals
227(10)
CHAPTER 6 Mechanical Properties of Metals II 237(42)
6.1 Recovery and Recrystallization of Plastically Deformed Metals
238(8)
6.1.1 Structure of a Heavily Cold-Worked Metal before Reheating
238(1)
6.1.2 Recovery
239(1)
6.1.3 Recrystallization
240(6)
6.2 Fracture of Metals
246(8)
6.2.1 Ductile Fracture
246(1)
6.2.2 Brittle Fracture
247(1)
6.2.3 Toughness and Impact Testing
248(3)
6.2.4 Fracture Toughness
251(3)
6.3 Fatigue of Metals
254(6)
6.3.1 Cyclic Stresses
256(2)
6.3.2 Basic Structural Changes that Occur in a Ductile Metal in the Fatigue Process
258(2)
6.3.3 Some Major Factors that Affect the Fatigue Strength of a Metal
260(1)
6.4 Fatigue Crack Propagation Rate
260(6)
6.4.1 Correlation of Fatigue Crack Propagation with Stress and Crack Length 261
6.4.2 Fatigue Crack Growth Rate versus Stress Intensity Factor Range Plots
263(1)
6.4.3 Fatigue Life Calculations
264(2)
6.5 Creep and Stress Rupture of Metals
266(4)
6.5.1 Creep of Metals
266(2)
6.5.2 The Creep Test
268(2)
6.5.3 Creep-Rupture Test
270(1)
6.6 Graphical Representation of Creep- and Stress-Rupture Time-Temperature Data Using the Larsen-Miller Parameter
270(9)
CHAPTER 7 Polymeric Materials 279(100)
7.1 Introduction
280(2)
7.2 Polymerization Reactions
282(12)
7.2.1 Covalent Bonding Structure an Ethylene Molecule
282(1)
7.2.2 Covalent Bonding Structure of an Activated Ethylene Molecule
282(1)
7.2.3 General Reaction for the Polymerization Polyethylene and the Degree of Polymerization
282(2)
7.2.4 Chain Ploymerization Steps
284(2)
7.2.5 Average Molecular Weight for Theroplastics
286(1)
7.2.6 Functionality of a Monomer
287(1)
7.2.7 Structure of Noncrystalline Linear Polymers
287(1)
7.2.8 Vinyl and Vinylidene Polymers
288(2)
7.2.9 Homopolymers and Copolymers
290(3)
7.2.10 Other Methods of Polymerization
293(1)
7.3 Industrial Polymerization Methods
294(3)
7.4 Crystallinity and Stereoisomerism in some Thermoplastics
297(5)
7.4.1 Solidification of Noncrystalline Thermoplastics
297(2)
7.4.2 Solidification of Partly Crystalline Thermoplastics
299(1)
7.4.3 Structure of Partly Crystalline Thermoplastic Materials
299(1)
7.4.4 Stereoisomerism in Thermoplastics
300(1)
7.4.5 Ziegler and Natta Catalysts
301(1)
7.5 Processing of Plastic Materials
302(7)
7.5.1 Processes Used for Thermoplastic Materials
303(3)
7.5.2 Processes Used for Thermosetting Materials
306(3)
7.6. General-purpose Thermoplastics
309(13)
7.6.1 Polyethylene
311(3)
7.6.2 Polyvinyl Chloride and Copolymers
314(2)
7.6.3 Polypropylene
316(1)
7.6.4 Polystyrene
316(1)
7.6.5 Polyacrylonitrile
317(1)
7.6.6 Stryrene-Acrylonitrile (SAN)
318(1)
7.6.7 ABS
318(2)
7.6.8 Polymethyl Methacrylate (PMMA)
320(1)
7.6.9 Fluoroplastics
321(1)
7.7 Engineering Thermoplastics
322(11)
7.7.1 Polyamides (Nylons)
324(3)
7.7.2 Polycarbonate
327(1)
7.7.3 Phenylene Oxide-Based Resins
328(1)
7.7.4 Acetals
328(1)
7.7.5 Thermoplastic Polyesters
329(2)
7.7.6 Polyphenylene Sulfide
331(1)
7.7.7 Polyetherimide
332(1)
7.7.8 Polymer Alloys
333(1)
7.8 Thermosetting Plastics (Thermosets)
333(10)
7.8.1 Phenolics
335(2)
7.8.2 Epoxy Resins
337(2)
7.8.3 Unsaturated Polyesters
339(2)
7.8.4 Amino Resins (Ureas and Melamines)
341(2)
7.9 Elastomers (Rubbers)
343(8)
7.9.1 Natural Rubber
343(3)
7.9.2 Synthetic Rubbers
346(2)
7.9.3 Properties of Polychloroprene Elastomers
348(1)
7.9.4 Vulcanization of Polychloroprene Elastomers
348(3)
7.10 Deformation and Strengthening of Plastic Materials
351(7)
7.10.1 Deformation Mechanisms for Thermoplastics
351(1)
7.10.2 Strengthening of Thermoplastics
352(5)
7.10.3 Strengthening of Thermosetting Plastics
357(1)
7.10.4 Effect of Temperature on the Strength of Plastic Materials
357(1)
7.11 Creep and Fracture of Polymeric Materials
358(21)
7.11.1 Creep of Polymeric Materials
358(2)
7.11.2 Stress Relaxation of Polymeric Materials
360(2)
7.11.3 Fracture of Polymeric Materials
362(17)
CHAPTER 8 Phase Diagrams 379(48)
8.1 Phase Diagrams of Pure Substances
380(2)
8.2 Gibbs Phase Rule
382(1)
8.3 Binary Isomorphous Alloy Systems
383(3)
8.4 The Lever Rule
386(4)
8.5 Nonequilibrium Solidification of Alloys
390(4)
8.6 Binary Eutectic Alloy Systems
394(7)
8.7 Binary Peritectic Alloy Systems
401(5)
8.8 Binary Monotectic Systems
406(1)
8.9 Invariant Reactions
407(2)
8.10 Phase Diagrams with Intermediate Phases and Compounds
409(4)
8.10.1 Phase Diagrams with Intermediate Phases
409(3)
8.10.2 Intermediate Compounds
412(1)
8.11 Ternary Phase Diagrams
413(14)
CHAPTER 9 Engineering Alloys 427(96)
9.1 Production of Iron and Steel
428(3)
9.1.1 Production of Pig Iron in a Blast Furnace
428(1)
9.1.2 Steelmaking and Processing of Major Steel Product Forms
428(3)
9.2 The Iron-Iron Carbide Phase Diagram
431(11)
9.2.1 The Iron-Iron Carbide Phase Diagram
431(1)
9.2.2 Solid Phases in the Fe-Fe3C Phase Diagram
432(2)
9.2.3 Invariant Reactions in the Fe-Fe3C Phase Diagram
434(1)
9.2.4 Slow Cooling of Plain-Carbon Steels
435(7)
9.3 Heat Treatment of Plain-Carbon Steels
442(19)
9.3.1 Martensite
442(5)
9.3.2 Isothermal Decomposition of Austenite
447(5)
9.3.3 Continuous-Cooling Transformation Diagram for a Eutectoid Plain-Carbon Steel
452(3)
9.3.4 Annealing and Normalizing of Plain-Carbon Steels
455(1)
9.3.5 Tempering of Plain-Carbon Steels
456(4)
9.3.6 Classification of Plain-Carbon Steels and Typical Mechanical Properties
460(1)
9.4 Low-Alloy Steels
461(9)
9.4.1 Classification of Alloy Steels
461(2)
9.4.2 Distribution of Alloying Elements in Alloy Steels
463(1)
9.4.3 Effects of Alloying Elements on the Eutectoid Temperature of Steels
464(1)
9.4.4 Hardenability
465(5)
9.4.5 Typical Mechanical Properties and Applications for Low-Alloy Steels
470(1)
9.5 Aluminum Alloys
470(18)
9.5.1 Precipitation Strengthening (Hardening)
472(7)
9.5.2 General Properties of Aluminum and Its Production
479(2)
9.5.3 Wrought Aluminum Alloys
481(4)
9.5.4 Aluminum Casting Alloys
485(3)
9.6 Copper Alloys
488(6)
9.6.1 General Properties of Copper
488(1)
9.6.2 Production of Copper
488(1)
9.6.3 Classification of Copper Alloys
488(1)
9.6.4 Wrought Copper Alloys
489(5)
9.7 Stainless Steels
494(4)
9.7.1 Ferritic Stainless Steels
494(1)
9.7.2 Martensitic Stainless Steels
495(1)
9.7.3 Austenitic Stainless Steels
495(3)
9.8 Cast Irons
498(8)
9.8.1 General Properties
498(1)
9.8.2 Types of Cast Irons
499(1)
9.8.3 White Cast Iron
499(1)
9.8.4 Gray Cast Iron
499(2)
9.8.5 Ductile Cast Irons
501(2)
9.8.6 Malleable Cast Irons
503(3)
9.9 Magnesium, Titanium, and Nickel Alloys
506(17)
9.9.1 Magnesium Alloys
506(2)
9.9.2 Titanium Alloys
508(2)
9.9.3 Nickel Alloys
510(13)
CHAPTER 10 Ceramics 523(80)
10.1 Introduction
524(2)
10.2 Simple Ceramic Crystal Structures
526(17)
10.2.1 Ionic and Covalent Bonding in Simple Ceramic Compounds
526(1)
10.2.2 Simple Ionic Arrangements Found in Ionically Bonded Solids
527(3)
10.2.3 Cesium Chloride (CsC1) Crystal Structure
530(1)
10.2.4 Sodium Chloride (NaCl) Crystal Structure
531(4)
10.2.5 Interstitial Sites in FCC and HCP Crystal Lattices
535(2)
10.2.6 Zinc Blend (ZnS) Crystal Structure
537(2)
10.2.7 Calcium Fluorite (CaF2) Crystal Structure
539(2)
10.2.8 Antifluorite Crystal Structure
541(1)
10.2.9 Corundum (Al2o3) Crystal Structure
541(1)
10.2.10 Spinel (MgA1204) Crystal Structure
541(1)
10.2.11 Perovskite (CaTiO3) Crystal Structure
541(1)
10.2.12 Graphite
542(1)
10.3 Silicate Structures
543(3)
10.3.1 Basic Structural Unit of the Silicate Silicates
543(1)
10.3.2 Island, Chain, and Ring Structures of Silicates
543(1)
10.3.3 Sheet Structures of Silicates
544(1)
10.3.4 Silicate Networks
545(1)
10.4 Processing of Ceramics
546(8)
10.4.1 Materials Preparation
547(1)
10.4.2 Forming
547(5)
10.4.3 Thermal Treatments
552(2)
10.5 Traditional and Engineering Ceramics
554(5)
10.5.1 Traditional Ceramics
554(2)
10.5.2 Engineering Ceramics
556(3)
10.6 Electrical Properties of Ceramics
559(11)
10.6.1 Basic Properties of Dielectrics
559(3)
10.6.2 Ceramic Insulator Materials
562(2)
10.6.3 Ceramic Materials for Capacitors
564(1)
10.6.4 Ceramic Semiconductors
565(1)
10.6.5 Ferroelectric Ceramics
566(4)
10.7 Mechanical Properties of Ceramics
570(7)
10.7.1 General
570(1)
10.7.2 Mechanisms for the Deformation of Ceramic Materials
570(2)
10.7.3 Factors Affecting the Strength of Ceramic Materials
572(1)
10.7.4 Toughness of Ceramic Materials
572(2)
10.7.5 Transformation Toughening of Partially Stabilized Zirconia (PSZ)
574(2)
10.7.6 Fatigue Failure of Ceramics
576(1)
10.7.7 Ceramic Abrasive Materials
577(1)
10.8 Thermal Properties of Ceramics
577(3)
10.8.1 Ceramic Refractory Materials
577(2)
10.8.2 Acidic Refractories
579(1)
10.8.3 Basic Refractories
579(1)
10.8.4 Ceramic Tile Insulation for the Space Shuttle Orbiter
580(1)
10.9 Glasses
580(23)
10.9.1 Definition of a Glass
581(1)
10.9.2 Glass Transition Temperature
581(1)
10.9.3 Structure of Glasses
582(2)
10.9.4 Compositions of Glasses
584(2)
10.9.5 Viscous Deformation of Glasses
586(2)
10.9.6 Forming Methods for Glasses
588(1)
10.9.7 Tempered Glass
588(3)
10.9.8 Chemically Strengthened Glass
591(12)
CHAPTER 11 Composite Materials 603(66)
11.1 Introduction
604(1)
11.2 Fibers for Reinforced-Plastic Composite Materials
604(8)
11.2.1 Glass Fibers for Reinforcing Plastic Resins
606(1)
11.2.2 Carbon Fibers for Reinforced Plastics
606(4)
11.2.3 Aramid Fibers for Reinforcing Plastic Resins
610(1)
11.2.4 Comparison of Mechanical Properties of Carbon, Aramid, and Glass Fibers for Reinforced-Plastic Composite Materials
610(2)
11.3 Fiber-Reinforced-Plastic Composite Materials
612(10)
11.3.1 Matrix Materials for Fiber-Reinforced Plastic Composite Materials
612(1)
11.3.2 Fiber-Reinforced-Plastic Composite Materials
613(4)
11.3.3 Equations for Plastic Modulus of a Lamellar Continuous-Fiber-Plastic Matrix Composite for Isostrain and Isostress Conditions
617(5)
11.4 Open-Mold Processes for Fiber-Reinforced-Plastic Composite Materials
622(5)
11.4.1 Hand Lay-Up Process
622(1)
11.4.2 Spray-Up Process
622(1)
11.4.3 Vacuum Bag Autoclave Process
623(2)
11.4.4 Filament-Winding Process
625(2)
11.5 Closed-Mold Processes for Fiber-Reinforced-Plastic Composite Materials
627(2)
11.5.1 Compression and Injection Molding
627(1)
11.5.2 The Sheet-Molding Compound (SMC) Process
627(2)
11.5.3 Continuous-Pultrusion Process
629(1)
11.6 Concrete
629(10)
11.6.1 Portland Cement
630(4)
11.6.2 Mixing Water for Concrete
634(1)
11.6.3 Aggregates for Concrete
634(1)
11.6.4 Air Entrainment
634(1)
11.6.5 Compressive Strength of Concrete
634(1)
11.6.6 Proportioning of Concrete Mixtures
635(2)
11.6.7 Reinforced and Prestressed Concrete
637(1)
11.6.8 Prestressed Concrete
638(1)
11.7 Asphalt and Asphalt Mixes
639(1)
11.8 Wood
640(10)
11.8.1 Macrostructure of Wood
640(2)
11.8.2 Microstructure of Softwoods
642(2)
11.8.3 Microstructure of Hardwoods
644(1)
11.8.4 Cell-Wall Ultrastructure
644(2)
11.8.5 Properties of Wood
646(4)
11.9 Sandwich Structures
650(2)
11.9.1 Honeycomb Sandwich Structure
651(1)
11.9.2 Cladded Metal Structures
651(1)
11.10 Metal-Matrix and Ceramic-Matrix Composites
652(17)
11.10.1 Metal-Matrix Composites (MMCs)
652(4)
11.10.2 Ceramic-Matrix Composites (CMGs)
656(13)
CHAPTER 12 Corrosion 669(60)
12.1 General
670(1)
12.2 Electrochemical Corrosion of Metals
671(3)
12.2.1 Oxidation-Reduction Reactions
671(1)
12.2.2 Standard Electrode Half Cell Potentials for Metals
672(2)
12.3 Galvanic Cells
674(12)
12.3.1 Macroscopic Galvanic Cells with Electrolytes That Are One Molar
674(3)
12.3.2 Galvanic Cells with Electrolytes That Are Not One Molar
677(1)
12.3.3 Galvanic Cells with Acid or Alkaline Electrolytes with No Metal Ions Present
678(1)
12.3.4 Microscopic Galvanic Cell Corrosion of Single Electrodes
679(2)
12.3.5 Concentration Galvanic Cells
681(2)
12.3.6 Galvanic Cells Created by Differences in Composition, Structure, and Stress
683(3)
12.4 Corrosion Rates (Dinetics)
686(10)
12.4.1 Rate of Uniform Corrosion or Electroplanting of a Metal in an Aqueous Solution
687(3)
12.4.2 Corrosion Reactions and Polarization
690(3)
12.4.3 Passivation
693(1)
12.4.4 The Galvanic Series
694(2)
12.5 Types of Corrosion
696(13)
12.5.1 Uniform or General Attack Corrosion
696(1)
12.5.2 Galvanic or Two-Metal Corrosion
696(1)
12.5.3 Pitting Corrosion
697(3)
12.5.4 Crevice Corrosion
700(2)
12.5.5 Intergranular Corrosion
702(2)
12.5.6 Stress Corrosion
704(3)
12.5.7 Erosion Corrsion
707(1)
12.5.8 Cavitation Damage
707(1)
12.5.9 Fretting Corrosion
708(1)
12.5.10 Selective Leaching
708(1)
12.6 Oxidation of Metals
709(5)
12.6.1 Protective Oxide Films
709(2)
12.6.2 Mechanisms of Oxidation
711(1)
12.6.3 Oxidation Rates (Kinetics)
711(3)
12.7 Corrosion Control
714(15)
12.7.1 Materials Selection
714(2)
12.7.2 Coatings
716(1)
12.7.3 Design
717(1)
12.7.4 Alteration of Environment
718(1)
12.7.5 Cathodic and Anodic Protection
718(11)
CHAPTER 13 Electrical Properties of Materials 729(14)
13.1 Electrical Conduction in Metals
730(11)
13.1.1 The Classic Model for Electrical Conduction in Metals
730(2)
13.1.2 Ohm's Law
732(4)
13.1.3 Drift Velocity of Electrons in a Conducting Metal
736(1)
13.1.4 Electrical Resistivity of Metals
737(4)
13.2 Energy-Band Model for Electrical Conduction
741(2)
13.2.1 Energy-Band Model for Metals 741
13.2.2 Energy-Band Model for Insulators 743(48)
13.3 Intrinsic Semiconductors
744(7)
13.3.1 The Mechanism of Electrical Conduction in Intrinsic Semiconductors
744(1)
13.3.2 Electrical Charge Transport in the Crystal Lattice of Pure Silicon
745(1)
13.3.3 Energy-Band Diagram for Intrinsic Elemental Semiconductors
746(1)
13.3.4 Quantitative Relationships for Electrical Conduction in Elemental Intrinsic Semiconductors
746(3)
13.3.5 Effect of Temperature on Intrinsic Semiconductivity
749(2)
13.4 Extrinsic Semiconductors
751(10)
13.4.1 n-Type (Negative-Type) Extrinsic Semiconductors
751(1)
13.4.2 p-Type (Positive-Type) Extrinsic Semiconductors
752(2)
13.4.3 Doping of Extrinsic Silicon Semiconductor Material
754(1)
13.4.4 Effect of Doping on Carrier Concentrations in Extrinsic Semiconductors
755(3)
13.4.5 Effect of Total Ionized Impurity Concentration on the Mobility of Charge Carriers in Silicon at Room Temperature
758(1)
13.4.6 Effect of Temperature on the Electrical Conductivity of Extrinsic Semiconductors
759(2)
13.5 Semiconductor Devices
761(8)
13.5.1 The pn Junction
762(3)
13.5.2 Some Applications for pn Junction Diodes
765
13.5.3 The Bipolar Junction Transistor
717(52)
13.6 Microelectronics
769(12)
13.6.1 Microelectronic Planar Bipolar Transistors
769(1)
13.6.2 Microelectronic Planar Field-Effect Transistors
770(3)
13.6.3 Fabrication of Microelectronic Integrated Circuits
773(8)
13.7 Compound Semiconductors
781(10)
CHAPTER 14 Optical Properties and Superconductive Materials 791(36)
14.1 Introduction
792(1)
14.2 Light and the Electromagnetic Spectrum
792(2)
14.3 Refraction of Light
794(3)
14.3.1 Index of Refraction
794(2)
14.3.2 Snell's Law of Light Refraction
796(1)
14.4 Absorption, Transmission, and Reflection of Light
797(5)
14.4.1 Metals
797(1)
14.4.2 Silicate Glasses
798(2)
14.4.3 Plastics
800(1)
14.4.4 Semiconductors
801(1)
14.5 Luminescence
802(2)
14.5.1 Photoluminescence
802(1)
14.5.2 Cathodoluminescence
803(1)
14.6 Stimulated Emission of Radiation and Lasers
804(5)
14.6.1 Types of Lasers
806(3)
14.7 Optical Fibers
809(5)
14.7.1 Light Loss in Optical Fibers
809(1)
14.7.2 Single-Mode and Multimode Optical Fibers
810(1)
14.7.3 Fabrication of Optical Fibers
810(3)
14.7.4 Modern Optical-Fiber Communication Systems
813(1)
14.8 Superconducting Materials
814(13)
14.8.1 The Superconducting State
814(1)
14.8.2 Magnetic Properties of Superconductors
815(2)
14.8.3 Current Flow and Magnetic Fields in Superconductors
817(1)
14.8.4 High-Current, High-Field Superconductors
818(2)
14.8.5 High Critical Temperature (Te) Superconducting Oxides
820(7)
CHAPTER 15 Magnetic Properties 827(50)
15.1 Magnetic Fields and Quantities
829(4)
15.1.1 Magnetic Fields
829(1)
15.1.2 Magnetic Induction
830(1)
15.1.3 Magnetic Permeability
831(2)
15.1.4 Magnetic Susceptibility
833(1)
15.2 Types of Magnetism
833(5)
15.2.1 Diamagnetism
833(1)
15.2.2 Paramagnetism
834(1)
15.2.3 Ferromagnetism
834(1)
15.2.4 Magnetic Moment of a Single Unpaired Atomic Electron
835(2)
15.2.5 Antiferromagnetism
837(1)
15.2.6 Ferrimagnetism
838(1)
15.3 Effect of Temperature on Ferromagnetism
838(1)
15.4 Ferromagnetic Domains
839(1)
15.5 Types of Energies that Determine the Structure of Ferromagnetic Domains
840(6)
15.5.1 Exchange Energy
841(1)
15.5.2 Magnetostatic Energy
841(1)
15.5.3 Magnetocrystalline Anisotropy Energy
842(1)
15.5.4 Domain Wall Energy
843(1)
15.5.5 Magnetostrictive Energy
844(2)
15.6 The Magnetization and Demagnetization of a Ferromagnetic Metal
846(1)
15.7 Soft Magnetic Materials
847(6)
15.7.1 Desirable Properties for Soft Magnetic Materials
847(1)
15.7.2 Energy Losses for Soft Magnetic Materials
847(2)
15.7.3 Iron-Silicon Alloys
849(1)
15.7.4 Metallic Glasses
849(2)
15.7.5 Nickel-Iron Alloys
851(2)
15.8 Hard Magnetic Materials
853(10)
15.8.1 Properties of Hard Magnetic Materials
853(4)
15.8.2 Alnico Alloys
857(1)
15.8.3 Rare Earth Alloys
858(1)
15.8.4 Neodymium-Iron-Boron Magnetic Alloys
859(1)
15.8.5 Iron-Chromium-Cobalt Magnetic Alloys
860(3)
15.9 Ferrites
863(14)
15.9.1 Magnetically Soft Ferrites
864(3)
15.9.2 Magnetically Hard Ferrites
867(10)
APPENDIX I Some Properties of Selected Elements 877(2)
APPENDIX II Ionic Radii of the Elements 879(2)
APPENDIX III Selected Physical Quantities and Their Units 881(2)
References for Further Study by Chapter 883(4)
Index 887

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program