did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9789812388063

Geometrical Theory of Dynamical Systems and Fluid Flows

by
  • ISBN13:

    9789812388063

  • ISBN10:

    9812388060

  • Format: Hardcover
  • Copyright: 2004-11-01
  • Publisher: World Scientific Pub Co Inc
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $117.00 Save up to $64.12
  • Digital
    $52.88
    Add to Cart

    DURATION
    PRICE

Supplemental Materials

What is included with this book?

Table of Contents

Preface v
I. Mathematical Bases
1. Manifolds, Flows, Lie Groups and Lie Algebras
3(42)
1.1 Dynamical Systems
3(1)
1.2 Manifolds and Diffeomorphisms
4(4)
1.3 Flows and Vector Fields
8(5)
1.3.1 A steady flow and its velocity field
8(2)
1.3.2 Tangent vector and differential operator
10(1)
1.3.3 Tangent space
11(1)
1.3.4 Time-dependent (unsteady) velocity field
12(1)
1.4 Dynamical Trajectory
13(5)
1.4.1 Fiber bundle (tangent bundle)
13(1)
1.4.2 Lagrangian and Hamiltonian
14(2)
1.4.3 Legendre transformation
16(2)
1.5 Differential and Inner Product
18(3)
1.5.1 Covector (1-form)
18(2)
1.5.2 Inner (scalar) product
20(1)
1.6 Mapping of Vectors and Covectors
21(4)
1.6.1 Push-forward transformation
21(2)
1.6.2 Pull-back transformation
23(1)
1.6.3 Coordinate transformation
24(1)
1.7 Lie Group and Invariant Vector Fields
25(2)
1.8 Lie Algebra and Lie Derivative
27(8)
1.8.1 Lie algebra, adjoint operator and Lie bracket
27(2)
1.8.2 An example of the rotation group SO(3)
29(1)
1.8.3 Lie derivative and Lagrange derivative
30(5)
1.9 Diffeomorphisms of a Circle S¹
35(1)
1.10 Transformation of Tensors and Invariance
36(9)
1.10.1 Transformations of vectors and metric tensors
36(2)
1.10.2 Covariant tensors
38(1)
1.10.3 Mixed tensors
39(3)
1.10.4 Contravariant tensors
42(3)
2. Geometry of Surfaces in R³
45(32)
2.1 First Fundamental Form
45(5)
2.2 Second Fundamental Form
50(2)
2.3 Gauss's Surface Equation and an Induced Connection
52(2)
2.4 Gauss-Mainardi-Codazzi Equation and Integrability
54(2)
2.5 Gaussian Curvature of a Surface
56(7)
2.5.1 Riemann tensors
56(2)
2.5.2 Gaussian curvature
58(1)
2.5.3 Geodesic curvature and normal curvature
59(1)
2.5.4 Principal curvatures
60(3)
2.6 Geodesic Equation
63(1)
2.7 Structure Equations in Differential Forms
64(5)
2.7.1 Smooth surfaces in R³ and integrability
64(2)
2.7.2 Structure equations
66(2)
2.7.3 Geodesic equation
68(1)
2.8 Gauss Spherical Map
69(1)
2.9 Gauss-Bonnet Theorem I
70(2)
2.10 Gauss Bonnet Theorem II
72(2)
2.11 Uniqueness: First and Second Fundamental Tensors
74(3)
3. Riemannian Geometry
77(50)
3.1 Tangent Space
77(3)
3.1.1 Tangent vectors and inner product
77(1)
3.1.2 Riemannian metric
78(1)
3.1.3 Examples of metric tensor
79(1)
3.2 Covariant Derivative (Connection)
80(2)
3.2.1 Definition
80(1)
3.2.2 Time-dependent case
81(1)
3.3 Riemannian Connection
82(1)
3.3.1 Definition
82(1)
3.3.2 Christoffel symbol
83(1)
3.4 Covariant Derivative along a Curve
83(2)
3.4.1 Derivative along a parameterized curve
83(1)
3.4.2 Parallel translation
84(1)
3.4.3 Dynamical system of an invariant metric
84(1)
3.5 Structure Equations
85(6)
3.5.1 Structure equations and connection forms
85(3)
3.5.2 Two-dimensional surface M²
88(1)
3.5.3 Example: Poincaré surface (I)
89(2)
3.6 Geodesic Equation
91(5)
3.6.1 Local coordinate representation
91(1)
3.6.2 Group-theoretic representation
92(1)
3.6.3 Example: Poincaré surface (II)
93(3)
3.7 Covariant Derivative and Parallel Translation
96(4)
3.7.1 Parallel translation again
96(2)
3.7.2 Covariant derivative again
98(1)
3.7.3 A formula of covariant derivative
98(2)
3.8 Arc-Length
100(2)
3.9 Curvature Tensor and Curvature Transformation
102(6)
3.9.1 Curvature transformation
102(1)
3.9.2 Curvature tensor
103(2)
3.9.3 Sectional curvature
105(2)
3.9.4 Ricci tensor and scalar curvature
107(1)
3.10 Jacobi Equation
108(6)
3.10.1 Derivation
108(3)
3.10.2 Initial behavior of Jacobi field
111(1)
3.10.3 Time-dependent problem
112(1)
3.10.4 Two-dimensional problem
113(1)
3.10.5 Isotropic space
114(1)
3.11 Differentiation of Tensors
114(3)
3.11.1 Lie derivatives of 1-form and metric tensor
114(1)
3.11.2 Riemannian connection
115(1)
3.11.3 Covariant derivative of tensors
116(1)
3.12 Killing Fields
117(4)
3.12.1 Killing vector field X
117(1)
3.12.2 Isometry
118(1)
3.12.3 Positive curvature and simplified Jacobi equation
118(1)
3.12.4 Conservation of (X,T) along λ(s)
119(1)
3.12.5 Killing tensor field
120(1)
3.13 Induced Connection and Second Fundamental Form
121(6)
II. Dynamical Systems
4. Free Rotation of a Rigid Body
127(26)
4.1 Physical Background
127(4)
4.1.1 Free rotation and Euler's top
127(3)
4.1.2 Integrals of motion
130(1)
4.1.3 Lie-Poisson bracket and Hamilton's equation
131(1)
4.2 Transformations (Rotations) by SO(3)
131(4)
4.2.1 Transformation of reference frames
132(1)
4.2.2 Right-invariance and left-invariance
133(2)
4.3 Commutator and Riemannian Metric
135(2)
4.4 Geodesic Equation
137(2)
4.4.1 Left-invariant dynamics
137(1)
4.4.2 Right-invariant dynamics
138(1)
4.5 Bi-Invariant Riemannian Metrices
139(4)
4.5.1 SO(3) is compact
140(1)
4.5.2 Ad-invariance and bi-invariant metrices
140(2)
4.5.3 Connection and curvature tensor
142(1)
4.6 Rotating Top as a Bi-Invariant System
143(10)
4.6.1 A spherical top (euclidean metric)
143(1)
4.6.2 An asymmetrical top (Riemannian metric)
144(2)
4.6.3 Symmetrical top and its stability
146(3)
4.6.4 Stability and instability of an asymmetrical top
149(1)
4.6.5 Supplementary notes to §4.6.3
150(3)
5. Water Waves and KdV Equation
153(18)
5.1 Physical Background: Long Waves in Shallow Water
154(4)
5.2 Simple Diffeomorphic Flow
158(3)
5.2.1 Commutator and metric of D(S¹)
158(2)
5.2.2 Geodesic equation on D(S¹)
160(1)
5.2.3 Sectional curvatures on D(S¹)
160(1)
5.3 Central Extension of D(S¹)
161(1)
5.4 KdV Equation as a Geodesic Equation on D(S¹)
161(2)
5.5 Killing Field of KdV Equation
163(5)
5.5.1 Killing equation
163(1)
5.5.2 Isometry group
163(1)
5.5.3 Integral invariant
164(1)
5.5.4 Sectional curvature
165(1)
5.5.5 Conjugate point
166(2)
5.6 Sectional Curvatures of KdV System
168(3)
6 Hamiltonian Systems: Chaos, Integrability and Phase Transition
171(20)
6.1 A Dynamical System with Self-Interaction
171(4)
6.1.1 Hamiltonian and metric tensor
171(2)
6.1.2 Geodesic equation
173(1)
6.1.3 Jacobi equation
173(1)
6.1.4 Metric and covariant derivative
174(1)
6.2 Two Degrees of Freedom
175(2)
6.2.1 Potentials
175(1)
6.2.2 Sectional curvature
176(1)
6.3 Hénon-Heiles Model and Chaos
177(1)
6.3.1 Conventional method
177(1)
6.3.2 Evidence of chaos in a geometrical aspect
177(1)
6.4 Geometry and Chaos
178(3)
6.5 Invariants in a Generalized Model
181(2)
6.5.1 Killing vector field
181(2)
6.5.2 Another integrable case
183(1)
6.6 Topological Signature of Phase Transitions
183(8)
6.6.1 Morse function and Euler index
184(1)
6.6.2 Signatures of phase transition
185(1)
6.6.3 Topological change in the mean-field XY model
186(5)
III. Flows of Ideal Fluids
7 Gauge Principle and Variational Formulation
191(62)
7.1 Introduction: Fluid Flows and Field Theory
191(2)
7.2 Lagrangians and Variational Principle
193(5)
7.2.1 Galilei-invariant Lagrangian
193(3)
7.2.2 Hamilton's variational formulations
196(1)
7.2.3 Lagrange's equation
197(1)
7.3 Conceptual Scenario of the Gauge Principle
198(4)
7.4 Global Gauge Transformation
202(1)
7.5 Local Gauge Transformation
202(3)
7.5.1 Covariant derivative
203(1)
7.5.2 Lagrangian
204(1)
7.6 Symmetries of Flow Fields
205(3)
7.6.1 Translational transformation
206(1)
7.6.2 Rotational transformation
206(1)
7.6.3 Relative displacement
207(1)
7.7 Laws of Translational Transformation
208(4)
7.7.1 Local Galilei transformation
208(1)
7.7.2 Determination of gauge field Α
209(1)
7.7.3 Irrotational fields ξ(χ) and u(χ)
210(2)
7.8 Fluid Flows as Material Motion
212(4)
7.8.1 Lagrangian particle representation
212(3)
7.8.2 Lagrange derivative and Lie derivative
215(1)
7.8.3 Kinematical constraint
216(1)
7.9 Gauge-Field Lagrangian LA (Translational Symmetry)
216(2)
7.9.1 A possible form
216(1)
7.9.2 Lagrangian of background thermodynamic state
217(1)
7.10 Hamilton's Principle for Potential Flows
218(6)
7.10.1 Lagrangian
218(1)
7.10.2 Material variations: irrotational and isentronic
219(1)
7.10.3 Constraints for variations
220(1)
7.10.4 Action principle for Lp
221(3)
7.11 Rotational Transformations
224(2)
7.11.1 Orthogonal transformation of velocity
224(1)
7.11.2 Infinitesimal transformations
225(1)
7.12 Gauge Transformation (Rotation)
226(3)
7.12.1 Local gauge transformation
226(1)
7.12.2 Covariant derivative
227(1)
7.12.3 Gauge principle
228(1)
7.12.4 Transformation law of the gauge field Ω
228(1)
7.13 Gauge-Field Lagrangian LB (Rotational Symmetry)
229(2)
7.14 Riot Savart's Law
231(2)
7.14.1 Vector potential of mass flux
231(2)
7.14.2 Vorticity as a gauge field
233(1)
7.15 Hamilton's Principle for an Ideal Fluid (Rotational Flows)
233(9)
7.15.1 Constitutive conditions
234(1)
7.15.2 Lagrangian and its variations
234(1)
7.15.3 Material variation: rotational and isentropic
235(2)
7.15.4 Euler's equation of motion
237(1)
7.15.5 Conservations of momentum and energy
238(2)
7.15.6 Noether's theorem for rotations
240(2)
7.16 Local Symmetries in α-Space
242(8)
7.16.1 Equation of motion in α-space
242(2)
7.16.2 Vorticity equation and local rotation symmetry
244(2)
7.16.3 Vorticity equation in the χ-space
246(2)
7.16.4 Kelvin's circulation theorem
248(1)
7.16.5 Lagrangian of the gauge field
249(1)
7.17 Conclusions
250(3)
8 Volume-Preserving Flows of an Ideal Fluid
253(40)
8.1 Fundamental Concepts
254(6)
8.1.1 Volume-preserving diffeomorphisms
254(3)
8.1.2 Right-invariant fields
257(3)
8.2 Basic Tools
260(4)
8.2.1 Commutator
260(1)
8.2.2 Divergence-free connection
261(1)
8.2.3 Coadjoint action ad*
262(1)
8.2.4 Formulas in R³ space
263(1)
8.3 Geodesic Equation
264(2)
8.4 Jacobi Equation and Frozen Field
266(2)
8.5 Interpretation of Riemannian Curvature of Fluid Flows
268(7)
8.5.1 Flat connection
268(1)
8.5.2 Pressure gradient as an agent yielding curvature
269(2)
8.5.3 Instability in Lagrangian particle sense
271(2)
8.5.4 Time evolution of Jacobi field
273(1)
8.5.5 Stretching of line-elements
273(2)
8.6 Flows on a Cubic Space (Fourier Representation)
275(2)
8.7 Lagrangian Instability of Parallel Shear Flows
277(8)
8.7.1 Negative sectional curvatures
277(2)
8.7.2 Stability of a plane Couette flow
279(5)
8.7.3 Other parallel shear flows
284(1)
8.8 Steady Flows and Beltrami Flows
285(5)
8.8.1 Steady flows
285(2)
8.8.2 A Beltrami flow
287(2)
8.8.3 ABC flow
289(1)
8.9 Theorem: α¹B = -iudα¹w + df
290(3)
9. Motion of Vortex Filaments
293
9.1 A Vortex Filament
294(3)
9.2 Filament Equation
297(4)
9.3 Basic Properties
301(3)
9.3.1 Left-invariance and right-invariance
301(1)
9.3.2 Landau-Lifshitz equation
302(1)
9.3.3 Lie Poisson bracket and Hamilton's equation
302(2)
9.3.4 Metric and loop algebra
304(1)
9.4 Geometrical Formulation and Geodesic Equation
304(2)
9.5 Vortex Filaments as a Bi-Invariant System
306(4)
9.5.1 Circular vortex filaments
306(2)
9.5.2 General vortex filaments
308(1)
9.5.3 Integral invariants
308(2)
9.6 Killing Fields on Vortex Filaments
310(4)
9.6.1 A rectilinear vortex
310(1)
9.6.2 A circular vortex
311(2)
9.6.3 A helical vortex
313(1)
9.7 Sectional Curvature and Geodesic Stability
314(1)
9.7.1 Killing fields
314(1)
9.7.2 General tangent field X
315(1)
9.8 Central Extension of the Algebra of Filament Motion
315(6)
IV. Geometry of Integrable Systems
10. Geometric Interpretations of Sine-Gordon Equation
321(30)
10.1 Pseudosphere: A Geometric Derivation of SG
321(3)
10.2 Bianchi-Lie Transformation
324(2)
10.3 B4cklund Transformation of SG Equation
326(3)
11. Integrable Surfaces: Riemannian Geometry and Group Theory
329(1)
11.1 Basic Ideas
329(1)
11.2 Iseudospherical Surfaces: SG, KdV, mKdV, ShG
330(3)
11.3 Spherical Surfaces: NLS, SG, NSM
333(7)
11.3.1 Nonlinear Schrodinger equation
333(2)
11.3.2 Sine-Gordon equation revisited
335(1)
11.3.3 Nonlinear sigma model and SG equation
336(2)
11.3.4 Spherical and pseudospherical surfaces
338(2)
11.4 Backlund Transformations Revisited
340(3)
11.4.1 A Bäcklund transformation
340(2)
11.4.2 Self-Backlund transformation
342(1)
11.5 Immersion of Integrable Surfaces on Lie Groups
343(5)
11.5.1 A surface Σ² in R³
343(1)
11.5.2 Surfaces on Lie groups and Lie algebras
344(2)
11.5.3 Nonlinear Schrödinger surfaces
346(2)
11.6 Mapping of Integrable Systems to Spherical Surfaces
348(3)
Appendix A Topological Space and Mappings 351(1)
A.1 Topology
351(1)
A.2 Mappings
351(2)
Appendix B Exterior Forms, Products and Differentials 353(1)
B.1 Exterior Forms
353(1)
B.2 Exterior Products (Multiplications)
355(1)
B.3 Exterior Differentiations
357(1)
B.4 Interior Products and Caftan's Formula
358(1)
B.5 Vector Analysis in R³
358(1)
B.6 Volume Form and Its Lie Derivative
361(1)
B.7 Integration of Forms
362(3)
B.7.1 Stokes's theorem
362(1)
B.7.2 Integral and pull-back
363(2)
Appendix C Lie Groups and Rotation Groups 365(1)
C.1 Various Lie Groups
365(1)
C.2 One-Parameter Subgroup and Lie Algebra
366(1)
C.3 Rotation Group SO(η)
367(1)
C.4 so(3)
368(3)
Appendix D A Curve and a Surface in R³ 371(1)
D.1 Frenet-Serret Formulas for a Space Curve
371(1)
D.2 A Plane Curve in R² and Gauss Map
372(1)
D.3 A Surface Defined by z = f(x, y) in R³
373(2)
Appendix E Curvature Transformation 375(4)
Appendix F Function Spaces Lp, Hs and Orthogonal Decomposition 379(2)
Appendix G Derivation of KdV Equation for a Shallow Water Wave 381(1)
G.1 Basic Equations and Boundary Conditions
381(1)
G.2 Long Waves in Shallow Water
382(3)
Appendix H Two-Cocycle, Central Extension and Bott Cocycle 385(1)
H.1 Two-Cocycle and Central Extension
385(1)
H.2 Bott Cocycle
387(1)
H.3 Gelfand-Fuchs Cocycle: An Extended Algebra
388(3)
Appendix I Additional Comment on the Gauge Theory of §7.3 391(2)
Appendix J Frobenius Integration Theorem and Pfaffian System 393(2)
Appendix K Orthogonal Coordinate Net and Lines of Curvature 395(4)
References 399(8)
Index 407

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program