rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780195118315

Handbook of Data Mining and Knowledge Discovery

by ;
  • ISBN13:

    9780195118315

  • ISBN10:

    0195118316

  • Format: Hardcover
  • Copyright: 2002-09-19
  • Publisher: Oxford University Press
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $266.66
We're Sorry.
No Options Available at This Time.

Summary

Data mining, or knowledge discovery in databases (KDD), is one of the fastest growing areas in computing application: it offers powerful tools to analyze the many large data bases used in business, science, and industry. Data mining technology searches large databases to extract information and patterns that can be translated into useful applications, such as classifying or predicting customer behavior. This book brings together fundamental knowledge on all aspects of data mining--concepts, theory, techniques, applications, and case studies. Designed for students and professionals in such fields as computing applications, information systems management and strategic research and management, the Handbook is a comprehensive guide to essential tools and technology, from neural networks to artificial intelligence. There is a strong emphasis on real-world case studies in such areas as banking, finance, marketing management, real estate, engineering, medicine, pharmacology, and the biosciences. A much needed resource on one of the fastest growing areas of computer applications--the development and use of tools to analyze, interpret, and make use of the enormous amounts of information stored in the world's databases.

Table of Contents

Foreword: Enhancing the Intelligence of Discovery Systems xvii
Herbert A. Simon
Foreword: Data Mining Coming of Age xix
Gregory Piatetsky-Shapiro
Preface xxi
Willi Klosgen
Jan M. Zytkow
PART ONE: DATA MINING AND KNOWLEDGE DISCOVERY
Knowledge Discovery in Databases: The Purpose, Necessity, and Challenges
1(9)
Willi Klosgen
Jan M. Zytkow
The Knowledge Discovery Process
10(12)
Willi Klosgen
Jan M. Zytkow
Multidisciplinary Contributions to Knowledge Discovery
22(11)
Jan M. Zytkow
Willi Klosgen
PART TWO: FUNDAMENTAL CONCEPTS
Types and Forms of Data
33(12)
Willi Klosgen
Types and Forms of Knowledge (Patterns)
45(28)
Contingency Tables
45(2)
Jan M. Zytkow
Subgroup Patterns
47(4)
Willi Klosgen
Rules
51(3)
Jan M. Zytkow
Decision Trees
54(2)
Jan M. Zytkow
Functional Relations
56(3)
Jan M. Zytkow
Clusters
59(2)
Padhraic Smyth
Taxonomies and Concept Hierarchies
61(3)
Jan M. Zytkow
Probabilistic and Causal Networks
64(4)
Clark Glymour
Neural Networks
68(5)
Witold Pedrycz
Data and Knowledge in Database Systems
73(26)
Relational Databases
73(5)
Raghu Ramakrishnan
Object-Oriented Databases
78(3)
Klaus R. Dittrich
Anca Vaduva
Multidimensional Databases and Online Analytical Processing
81(4)
Surajit Chaudhuri
Umesh Dayal
Deductive Databases
85(4)
Carlo Zaniolo
Parallel Databases
89(4)
Shahram Ghandeharizadeh
Frank Sommers
Distributed, Heterogeneous, and Federated Databases
93(3)
Witold Litwin
Meta-Data Management
96(3)
Klaus R. Dittrich
Anca Vaduva
Logic Perspective on Data and Knowledge
99(17)
Lech Polkowski
Andrzej Skowron
Statistics Perspective on Data and Knowledge
116(18)
David Madigan
Martha Nason
Rough Sets Perspective on Data and Knowledge
134(16)
Andrzej Skowron
Jan Komorowski
Zdzislaw Pawlak
Lech Polkowski
Fuzzy Sets Perspective on Data and Knowledge
150(19)
Witold Pedrycz
Search Techniques
169(16)
Weixiong Zhang
PART THREE: THE PROCESS OF KNOWLEDGE DISCOVERY IN DATABASES
Stages of the Discovery Process
185(8)
Thomas Reinartz
Data Warehousing
193(12)
Data Cleaning and Loading
193(5)
Toby Bloom
Warehouse Administration
198(7)
Wolfgang Lehner
Data Reduction
205(21)
Sampling
205(3)
David Madigan
Martha Nason
Feature Selection
208(6)
Hiroshi Motoda
Huan Liu
Feature Aggregation
214(4)
Hiroshi Motoda
Huan Liu
Discretization of Numerical Attributes
218(8)
Jerzy W. Grzymala-Busse
Data Visualization for Domain Exploration
226(28)
Interactive Statistical Graphics
226(6)
Graham J. Wills
Daniel Keim
Highly Multivariate Interaction Techniques
232(10)
Martin Theus
Geographical Information Systems
242(7)
Martin Theus
Animation Techniques
249(5)
Stephen G. Eick
Data Mining Tasks and Methods
254(189)
Classification
254(74)
The Goal of Classification
254(4)
Hans-Hermann Bock
Classification Methodology
258(9)
Hans-Hermann Bock
Decision-Tree Discovery
267(10)
Ronny Kohavi
J. Ross Quinlan
Decision Rules
277(5)
Willi Klosgen
Bayesian Classification
282(6)
Nir Friedman
Ronny Kohavi
Nearest-Neighbor Approaches
288(10)
Belur V. Dasarathy
Regression
298(6)
Robert Henery
Neural Network Approaches
304(14)
Andreas Nurnberger
Witold Pedrycz
Rudolf Kruse
Multicriteria Classification
318(10)
Salvatore Greco
Benedetto Matarazzo
Roman Slowinski
Rule Discovery
328(26)
Rough Set Approaches for Discovering Rules and Attribute Dependencies
328(11)
Wojciech Ziarko
Characteristic Rules
339(5)
Jiawei Han
Association Rules
344(4)
Heikki Mannila
Inductive Logic Programming Approaches
348(6)
Saso Dzeroski
Subgroup Discovery
354(14)
Deviation Analysis
354(7)
Willi Klosgen
Change Analysis
361(3)
Willi Klosgen
Drill-Down Methods
364(4)
Tejwansh S. Anand
Equation Fitting
368(18)
Methodology for Equation Fitting
368(7)
Takashi Washio
Hiroshi Motoda
Equation Finders
375(5)
Jan M. Zytkow
Multidimensional Regression Analysis
380(6)
J. Sunil Rao
William J. E. Potts
Clustering
386(10)
Numerical Clustering
386(2)
Padhraic Smyth
Conceptual Clustering
388(8)
Douglas Fisher
Probabilistic and Causal Networks
396(13)
Methodology for Probabilistic Networks
396(7)
Peter L. Spirtes
Mining for Probabilistic Networks
403(6)
Peter L. Spirtes
Spatial Analysis
409(9)
Martin Ester
Scalability
418(15)
Foster Provost
Venkateswarlu Kolluri
Parallel Methods for Scaling Data Mining Algorithms to Large Data Sets
433(10)
Robert Grossman
Yike Guo
Task and Method Selection
443(8)
Selection of Tasks
443(1)
Padhraic Smyth
Selection of Data Mining Methods for Tasks C5.1-C5.8
444(7)
Guido Lindner
Robert Engels
Rudi Studer
Domain Knowledge to Support the Discovery Process
451(24)
Taxonomies
451(6)
Willi Klosgen
Constraints
457(4)
Willi Klosgen
Previously Discovered Knowledge
461(6)
Bing Liu
Wynne Hsu
User Preferences
467(8)
Bing Liu
Wynne Hsu
Knowledge Evaluation
475(34)
Statistical Evaluations
475(15)
David D. Jensen
Other Evaluations
490(19)
Minimum Description Length
490(6)
Alexander Tuzhilin
Usefulness, Novelty, and Integration of Interestingness Measures
496(13)
Alexander Tuzhilin
Presentation and Visualization
509(15)
Visualization of Data Mining Results
509(7)
Willi Klosgen
Stephan R. W. Lauer
Natural Language Presentation and Automatic Report Generation
516(8)
Robert Dale
From Discovered Knowledge to Decisionmaking
524(5)
Arno Siebes
Legal Aspects of KDD
529(10)
Privacy
529(4)
Jason Catlett
Contractual Issues
533(6)
David B. Hamilton
PART FOUR: DISCOVERY SYSTEMS
Overview of Discovery Systems
539(5)
Willi Klosgen
Case Studies
544(93)
Public Domain, Multiple Mining Tasks Systems
544(20)
DBMiner
544(4)
Jiawei Han
MLC++
548(6)
Ronny Kohavi
Daniel A. Sommerfield
ROSETTA Rough Sets
554(5)
Jan Komorowski
Aleksander Øhrn
Andrzej Skowron
49er
559(5)
Jan M. Zytkow
Commercial, Multiple Mining Tasks Systems
564(45)
Clementine
564(8)
Colin Shearer
Peter Caron
Data Surveyor
572(4)
Arno Siebes
Kepler and Descartes/Dialogis
576(8)
Stefan Wrobel
Gennady Andrienko
Natalia Andrienko
Andrea Luthje
MineSet
584(5)
Cliff Brunk
Ronny Kohavi
Overview of SAS Enterprise Miner
589(12)
Kelly Sang
GainSmarts
601(8)
Nissan Levin
Jacob Zahavi
Public Domain, Single Mining Tasks Systems
609(11)
AutoClass (Clustering)
609(4)
John Stutz
VisDB
613(7)
Daniel A. Keim
Commercial Domain, Single Mining Tasks Systems
620(17)
TETRAD II
620(2)
Clark Glymour
Visual Insights
622(7)
Stephen G. Eick
Document Explorer
629(8)
Ronen Feldman
PART FIVE: INTERDISCIPLINARY LINKS OF KDD
Statistics
637(7)
David J. Hand
Using Relational Databases in KDD
644(8)
Heikki Mannila
Artificial Intelligence
652(8)
Jan M. Zytkow
Machine Learning
660(11)
Pedro Domingos
Automated Scientific Discovery
671(9)
Jan M. Zytkow
Fuzzy and Rough Sets
680(10)
Witold Pedrycz
Andrzej Skowron
Neural Networks
690(8)
Witold Pedrycz
Evolutionary Computation
698(9)
Alex Alves Freitas
Visualization
707(8)
Graham J. Wills
PART SIX: BUSINESS PROBLEMS
Marketing
715(11)
Lynd D. Bacon
Fraud Detection
726(6)
Tom E. Fawcett
Foster Provost
Risk Analysis
732(9)
Ira J. Haimowitz
Tim K. Keyes
Production Control
741(8)
Pieter W. Adriaans
Text Mining
749(9)
Ronen Feldman
Multimedia Applications
758(13)
Duminda Wijesekera
Daniel Barbara
PART SEVEN: INDUSTRY SECTORS
Banking and Finance
771(10)
Gholamreza Nakhaeizadeh
Elmar Steurer
Kai Bartlmae
Telecommunications
781(7)
Leonardo Carbonara
Engineering
788(10)
Anna L. Buczak
Wojciech Ziarko
Medicine
798(10)
Shusaku Tsumoto
Pharmacology
808(9)
Miguel Teodoro
Lydia E. Kavraki
Sciences
817(26)
Environmental Sciences
817(13)
Saso Dzeroski
Molecular Biology
830(13)
Aleksandar Milosavljevic
PART EIGHT: KDD IN PRACTICE: CASE STUDIES
Industry
843(85)
Database Marketing and Web Mining
843(6)
Sarabjot S. Anand
Alex G. Buchner
The Use of Modern Heuristic Algorithms for Mining Insurance Data
849(7)
V. J. Rayward-Smith
J. C. W. Debuse
B. de la Iglesia
Adaptive Fraud Detection
856(7)
Tom E. Fawcett
Break Detection Systems
863(11)
Ted E. Senator
Henry G. Goldberg
Using Decision Tree Induction to Minimize Process Delays in the Printing Industry
874(7)
Robert B. Evans
Douglas Fisher
Automated Search for Diagnostic Knowledge on Rotating Machinery
881(10)
Wojciech Moczulski
Predicting Telecommunication Equipment Failures from Sequences of Network Alarms
891(6)
Gary M. Weiss
Telecommunications Network Diagnosis
897(6)
Andrea Pohoreckyj Danyluk
Foster Provost
Brian Carr
Text Mining with Self-Organizing Maps
903(7)
Dieter Merkl
Predicting Daily Stock Indices Movements from Financial News
910(10)
B. Wuthrich
Internet Usage Analysis
920(8)
Gavin Meggs
Public Administration and Health Care
928(33)
Data Mining and Hospital Infection Control Surveillance
928(8)
Stephen E. Brossette
Stephen A. Moser
Preterm Birth Prediction/System LERS
936(8)
Linda K. Goodwin
Jerzy W. Grzymala-Busse
Estimating Latent Causal Influences: TETRAD III Variable Selection and Bayesian Parameter Estimation
944(9)
Richard Scheines
College Education: Mining University Enrollment Data
953(8)
Arun P. Sanjeev
Science
961(20)
Gene Expression Analysis
961(6)
Daniel C. Weaver
Similarities and Differences among Catalysts: Clustering and Profiling Diverse Data on Chemical Reactions
967(5)
Raul E. Valdes-Perez
Andrew V. Zeigarnik
Jerome Pesenti
Knowledge Discovery in High-Energy Particle and Nuclear Physics
972(9)
David Zimmerman
Iwona Sakrejda
Doug Olson
Directory of Contributors 981(8)
Index 989

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program