rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9783527405848

Handbook of Machine Vision

by
  • ISBN13:

    9783527405848

  • ISBN10:

    3527405844

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 2006-08-23
  • Publisher: Wiley-VCH

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $254.87 Save up to $73.28
  • Rent Book $181.59
    Add to Cart Free Shipping Icon Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-4 BUSINESS DAYS
    *This item is part of an exclusive publisher rental program and requires an additional convenience fee. This fee will be reflected in the shopping cart.

How To: Textbook Rental

Looking to rent a book? Rent Handbook of Machine Vision [ISBN: 9783527405848] for the semester, quarter, and short term or search our site for other textbooks by Hornberg, Alexander. Renting a textbook can save you up to 90% from the cost of buying.

Summary

With the demands of quality management and process control in an industrial environment machine vision is becoming an important issue. This handbook of machine vision is written by experts from leading companies in this field. It goes through all aspects of image acquisition and image processing. From the viewpoint of the industrial application the authors also elucidate in topics like illumination or camera calibration. Attention is paid to all hardware aspects, starting from lenses and camera systems to camera-computer interfaces. Besides the detailed hardware descriptions the necessary software is discussed with equal profoundness. This includes sections on digital image basics as well as image analysis and image processing. Finally the user is introduced to general aspects of industrial applications of machine vision, such as case studies and strategies for the conception of complete machine vision systems. With this handbook the reader will be enabled not only to understand up to date systems for machine vision but will also be qualified for the planning and evaluation of such technology.

Author Biography

Alexander Hornberg is Professor for Physics and Photonics at the University of Applied Sciences Esslingen, Germany. He holds a degree in physics and a doctorate in mathematics from the University of Karlsruhe. He started his professional career as development and software engineer for a major industry manufacturer (DUNLOP) in 1989. In 1992 he returned to higher education at the University of Applied Sciences Ulm. Since 1997 he has been working in the field of machine vision at the Technical University of Applied Sciences Esslingen.

Table of Contents

1 Processing of Information in the Human Visual System 1(34)
Prof. Dr. F. Schaeffel, University of Tübingen
1.1 Preface
1(1)
1.2 Design and Structure of the Eye
1(4)
1.3 Optical Aberrations and Consequences for Visual Performance
5(4)
1.4 Chromatic Aberration
9(3)
1.5 Neural Adaptation to Monochromatic Aberrations
12(1)
1.6 Optimizing Retinal Processing with Limited Cell Numbers, Space and Energy
13(1)
1.7 Adaptation to Different Light Levels
13(2)
1.8 Rod and Cone Responses
15(3)
1.9 Spiking and Coding
18(1)
1.10 Temporal and Spatial Performance
19(1)
1.11 ON/OFF Structure, Division of the Whole Illuminance Amplitude in Two Segments
20(1)
1.12 Consequences of the Rod and Cone Diversity on Retinal Wiring
21(1)
1.13 Motion Sensitivity in the Retina
21(2)
1.14 Visual Information Processing in Higher Centers
23(3)
1.14.1 Morphology
23(1)
1.14.2 Functional Aspects - Receptive Field Structures and Cortical Modules
24(2)
1.15 Effects of Attention
26(1)
1.16 Color Vision, Color Constancy, and Color Contrast
27(1)
1.17 Depth Perception
28(1)
1.18 Adaptation in the Visual System to Color, Spatial, and Temporal Contrast
29(1)
1.19 Conclusions
30(2)
References
32(3)
2 Introduction to Building a Machine Vision Inspection 35(38)
Axel Telljohann, Consulting Team Machine Vision (CTMV)
2.1 Preface
35(1)
2.2 Specifying a Machine Vision System
36(5)
2.2.1 Task and Benefit
37(1)
2.2.2 Parts
37(1)
2.2.2.1 Different Part Types
38(1)
2.2.3 Part Presentation
38(1)
2.2.4 Performance Requirements
39(1)
2.2.4.1 Accuracy
39(1)
2.2.4.2 Time Performance
39(1)
2.2.5 Information Interfaces
39(1)
2.2.6 Installation Space
40(1)
2.2.7 Environment
41(1)
2.2.8 Checklist
41(1)
2.3 Designing a Machine Vision System
41(15)
2.3.1 Camera Type
41(1)
2.3.2 Field of View
42(1)
2.3.3 Resolution
43(3)
2.3.3.1 Camera Sensor Resolution
44(1)
2.3.3.2 Spatial Resolution
44(1)
2.3.3.3 Measurement Accuracy
44(1)
2.3.3.4 Calculation of Resolution
45(1)
2.3.3.5 Resolution for a Line Scan Camera
45(1)
2.3.4 Choice of Camera, Frame Grabber, and Hardware Platform
46(2)
2.3.4.1 Camera Model
46(1)
2.3.4.2 Frame Grabber
46(1)
2.3.4.3 Pixel Rate
46(1)
2.3.4.4 Hardware Platform
47(1)
2.3.5 Lens Design
48(2)
2.3.5.1 Focal Length
48(1)
2.3.5.2 Lens Flange Focal Distance
49(1)
2.3.5.3 Extension Tubes
49(1)
2.3.5.4 Lens Diameter and Sensor Size
50(1)
2.3.5.5 Sensor Resolution and Lens Quality
50(1)
2.3.6 Choice of Illumination
50(3)
2.3.6.1 Concept: Maximize Contrast
51(1)
2.3.6.2 Illumination Setups
51(1)
2.3.6.3 Light Sources
52(1)
2.3.6.4 Approach to the Optimum Setup
52(1)
2.3.6.5 Interfering Lighting
53(1)
2.3.7 Mechanical Design
53(1)
2.3.8 Electrical Design
53(1)
2.3.9 Software
54(3)
2.3.9.1 Software Library
54(1)
2.3.9.2 Software Structure
54(1)
2.3.9.3 General Topics
55(1)
2.4 Costs
56(1)
2.5 Words on Project Realization
57(1)
2.5.1 Development and Installation
57(1)
2.5.2 Test Run and Acceptance Test
58(1)
2.5.3 Training and Documentation
58(1)
2.6 Examples
58(15)
2.6.1 Diameter Inspection of Rivets
59(6)
2.6.1.1 Task
59(1)
2.6.1.2 Specification
59(1)
2.6.1.3 Design
60(5)
2.6.2 Tubing Inspection
65(8)
2.6.2.1 Task
65(1)
2.6.2.2 Specification
65(1)
2.6.2.3 Design
66(7)
3 Lighting in Machine Vision 73(132)
I. Jahr, Vision & Control GmbH
3.1 Introduction
73(5)
3.1.1 Prologue
73(2)
3.1.2 The Involvement of Lighting in the Complex Machine Vision Solution
75(3)
3.2 Demands on Machine Vision lighting
78(4)
3.3 Light used in Machine Vision
82(23)
3.3.1 What is Light? Axioms of Light
82(2)
3.3.2 Light and Light Perception
84(4)
3.3.3 Light Sources for Machine Vision
88(12)
3.3.3.1 Incandescent Lamps / Halogen Lamps
89(2)
3.3.3.2 Metal Vapor Lamps
91(1)
3.3.3.3 Xenon Lamps
92(1)
3.3.3.4 Fluorescent Lamps
93(2)
3.3.3.5 LEDs (Light Emitting Diodes)
95(4)
3.3.3.6 Lasers
99(1)
3.3.4 The Light Sources in Comparison
100(1)
3.3.5 Considerations for Light Sources: Lifetime, Aging, Drift
100(5)
3.3.5.1 Lifetime
100(2)
3.3.5.2 Aging and Drift
102(3)
3.4 Interaction of Test Object and Light
105(20)
3.4.1 Risk Factor Test Object
105(11)
3.4.1.1 What Does the Test Object do With the Incoming Light?
106(1)
3.4.1.2 Reflection/reflectance /scattering
107(4)
3.4.1.3 Total Reflection
111(1)
3.4.1.4 Transmission/transmittance
112(1)
3.4.1.5 Absorption/absorbance
113(1)
3.4.1.6 Diffraction
114(1)
3.4.1.7 Refraction
115(1)
3.4.2 Light Color and Part Color
116(9)
3.4.2.1 Visible Light (VIS) — Monochromatic Light
116(2)
3.4.2.2 Visible Light (VIS) — White Light
118(1)
3.4.2.3 Infrared Light (IR)
119(2)
3.4.2.4 Ultraviolet Light (UV)
121(1)
3.4.2.5 Polarized Light
122(3)
3.5 Basic Rules and Laws of Light Distribution
125(13)
3.5.1 Basic Physical Quantities of Light
125(2)
3.5.2 The Photometric Inverse Square Law
127(1)
3.5.3 The Constancy of Luminance
128(1)
3.5.4 What Light Arrives at the Sensor — Light Transmission Through the Lens
129(2)
3.5.5 Light Distribution of Lighting Components
131(3)
3.5.6 Contrast
134(2)
3.5.7 Exposure
136(2)
3.6 Light Filters
138(12)
3.6.1 Characteristic Values of Light Filters
138(2)
3.6.2 Influences of Light Filters on the Optical Path
140(1)
3.6.3 Types of Light Filters
141(2)
3.6.4 Anti-Reflective Coatings (AR)
143(1)
3.6.5 Light Filters for Machine Vision
144(6)
3.6.5.1 UV Blocking Filter
144(1)
3.6.5.2 Daylight Suppression Filter
144(2)
3.6.5.3 IR Suppression Filter
146(1)
3.6.5.4 Neutral Filter/Neutral Density Filter/Gray Filter
146(1)
3.6.5.5 Polarization Filter
147(1)
3.6.5.6 Color Filters
148(1)
3.6.5.7 Filter Combinations
149(1)
3.7 Lighting Techniques and Their Use
150(36)
3.7.1 How to Find a Suitable Lighting?
150(1)
3.7.2 Planning the Lighting Solution — Influence Factors
151(3)
3.7.3 Lighting Systematics
154(6)
3.7.3.1 Directional Properties of the Light
155(2)
3.7.3.2 Arrangement of the Lighting
157(1)
3.7.3.3 Properties of the Illuminated Field
158(2)
3.7.4 The Lighting Techniques in Detail
160(24)
3.7.4.1 Diffuse Bright Field Incident Light
160(2)
3.7.4.2 Directed Bright Field Incident Light
162(1)
3.7.4.3 Telecentric Bright Field Incident Light
163(2)
3.7.4.4 Structured Bright Field Incident Light
165(4)
3.7.4.5 Diffuse/Directed Partial Bright Field Incident Light
169(4)
3.7.4.6 Diffuse/Directed Dark Field Incident Light
173(3)
3.7.4.7 The Limits of the Incident Lighting
176(1)
3.7.4.8 Diffuse Bright Field Transmitted Lighting
177(1)
3.7.4.9 Directed Bright Field Transmitted Lighting
178(2)
3.7.4.10 Telecentric Bright Field Transmitted Lighting
180(4)
3.7.4.11 Diffuse/Directed Transmitted Dark Field Lighting
184(1)
3.7.5 Combined Lighting Techniques
184(2)
3.8 Lighting Control
186(15)
3.8.1 Reasons for Light Control - the Environmental Industrial Conditions
186(1)
3.8.2 Electrical Control
186(12)
3.8.2.1 Stable Operation
186(3)
3.8.2.2 Brightness Control
189(1)
3.8.2.3 Temporal Control: Static-Pulse-Flash
189(2)
3.8.2.4 Some Considerations for the Use of Flash Light
191(4)
3.8.2.5 Temporal and Local Control: Adaptive Lighting
195(3)
3.8.3 Geometrical Control
198(2)
3.8.3.1 Lighting from Large Distances
198(1)
3.8.3.2 Light Deflection
199(1)
3.8.4 Suppression of Ambient and Extraneous Light - Measures for a Stable Lighting
200(1)
3.9 Lighting Perspectives for the Future
201(1)
References
202(3)
4 Optical Systems in Machine Vision 205(128)
Dr. Karl Lenhardt, Jos. Schneider Optische Werke GmbH
4.1 A Look on the Foundations of Geometrical Optics
205(5)
4.1.1 From Electrodynamics to the Light Rays
205(3)
4.1.2 The Basic Laws of Geometrical Optics
208(2)
4.2 Gaussian Optics
210(58)
4.2.1 Reflection and Refraction at the Boundary between two Media
210(2)
4.2.2 Linearizing the Law of Refraction - the Paraxial Approximation
212(1)
4.2.3 Basic Optical Conventions
213(3)
4.2.4 The Cardinal Elements of a Lens in Gaussian Optics
216(5)
4.2.5 The Thin Lens Approximation
221(1)
4.2.6 Beam Converging and Beam Diverging Lenses
222(1)
4.2.7 Graphical Image Constructions
223(1)
4.2.7.1 Beam Converging Lenses
223(1)
4.2.7.2 Beam Diverging Lenses
224(1)
4.2.8 Imaging Equations and Their Related Coordinate Systems
224(5)
4.2.8.1 Reciprocity Equation
225(1)
4.2.8.2 Newton's Equations
226(1)
4.2.8.3 General Imaging Equation
227(2)
4.2.8.4 The Axial Magnification Ratio
229(1)
4.2.9 The Overlapping of Object and Image Space
229(1)
4.2.10 Focal Length, Lateral Magnification and the Field of View
229(2)
4.2.11 Systems of Lenses
231(3)
4.2.12 Consequences of the Finite Extension of Ray Pencils
234(10)
4.2.12.1 Effects of Limitations of the Ray Pencils
234(3)
4.2.12.2 Several Limiting Openings
237(3)
4.2.12.3 Characterizing the Limits of Ray Pencils
240(3)
4.2.12.4 The Relation to the Linear Camera Model
243(1)
4.2.13 Geometrical Depth of Field and Depth of Focus
244(7)
4.2.13.1 Depth of Field as a Function of the Object Distance p
246(1)
4.2.13.2 Depth of Field as a Function of β
247(1)
4.2.13.3 The Hyperfocal Distance
248(1)
4.2.13.4 The Permissible Size for the Circle of Confusion d'
249(2)
4.2.14 The Laws of Central Projection-Telecentric System
251(17)
4.2.14.1 An Introduction to the Laws of Perspective
251(9)
4.2.14.2 Central Projection from Infinity - Telecentric Perspective
260(8)
4.3 The Wave Nature of Light
268(19)
4.3.1 Introduction
268(1)
4.3.2 The Rayleigh-Sommerfeld Diffraction Integral
269(3)
4.3.3 Further Approximations to the Huygens-Fresnel Principle
272(3)
4.3.3.1 Fresnel's Approximation
273(2)
4.3.4 The Impulse Response of an Aberration Free Optical System
275(3)
4.3.4.1 The Case of Circular Aperture, Object Point on the Optical Axis
278(1)
4.3.5 The Intensity Distribution in the Neighbourhood of the Geometrical Focus
278(4)
4.3.6 The Extension of the Point Spread Function in a Defocused Image Plane
282(3)
4.3.7 Consequences for the Depth of Field Considerations
285(2)
4.4 Information Theoretical Treatment of Image Transfer and Storage
287(29)
4.4.1 Physical Systems as Linear, Invariant Filters
288(8)
4.4.2 The Optical Transfer Function (OTF) and the meaning of spatial frequency
296(2)
4.4.3 Extension to the Two-Dimensional Case
298(4)
4.4.3.1 The Interpretation of Spatial Frequency Components (r, s)
298(2)
4.4.3.2 Reduction to One-Dimensional Representations
300(2)
4.4.4 Impulse Response and MTF for Semiconductor Imaging Devices
302(2)
4.4.5 The Transmission Chain
304(1)
4.4.6 The Aliasing Effect and the Space Variant Nature of Aliasing
305(11)
4.4.6.1 The Space Variant Nature of Aliasing
312(4)
4.5 Criteria for Image Quality
316(10)
4.5.1 Gaussian Data
316(1)
4.5.2 Overview on Aberrations of Third Order
316(1)
4.5.3 Image Quality in the Space Domain: PSF, LSF, ESF and Distortion
317(4)
4.5.4 Image Quality in Spatial Frequency Domain: MTF
321(2)
4.5.5 Other Image Quality Parameters
323(2)
4.5.5.1 Relative Illumination (Relative Irradiance ) [17]
323(2)
4.5.5.2 Deviation from Telecentricity (for Telecentric Lenses only)
325(1)
4.5.6 Manufacturing Tolerances and Image Quality
325(1)
4.6 Practical Aspects
326(5)
References
331(2)
5 Camera Calibration 333(28)
R. Godding, AICON 3D Systems GmbH
5.1 Introduction
333(1)
5.2 Terminology
334(2)
5.2.1 Camera, Camera system
334(1)
5.2.2 Coordinate systems
335(1)
5.2.3 Interior Orientation and Calibration
335(1)
5.2.4 Exterior and Relative Orientation
335(1)
5.2.5 System Calibration
336(1)
5.3 Physical Effects
336(2)
5.3.1 Optical System
336(1)
5.3.2 Camera and Sensor Stability
336(1)
5.3.3 Signal Processing and Transfer
337(1)
5.4 Mathematical Calibration Model
338(8)
5.4.1 Central Projection
338(1)
5.4.2 Camera Model
339(1)
5.4.3 Focal Length and Principal Point
340(1)
5.4.4 Distortion and Affinity
340(1)
5.4.5 Radial symmetrical distortion
341(1)
5.4.6 Radial Asymmetrical and Tangential Distortion
342(1)
5.4.7 Affinity and Nonorthogonality
343(1)
5.4.8 Variant Camera Parameters
343(2)
5.4.9 Sensor Flatness
345(1)
5.4.10 Other Parameters
345(1)
5.5 Calibration and Orientation Techniques
346(8)
5.5.1 In the Laboratory
346(1)
5.5.2 Using Bundle Adjustment to Determine Camera Parameters
346(6)
5.5.2.1 Calibration based Exclusively on Image Information
347(2)
5.5.2.2 Calibration and Orientation with Additional Object Information
349(2)
5.5.2.3 Extended System Calibration
351(1)
5.5.3 Other Techniques
352(2)
5.6 Verification of Calibration Results
354(1)
5.7 Applications
355(3)
5.7.1 Applications with Simultaneous Calibration
355(1)
5.7.2 Applications with precalibrated cameras
356(5)
5.7.2.1 Tube Measurement within a Measurement Cell
356(1)
5.7.2.2 Online Measurements in the Field of Car Safety
357(1)
5.7.2.3 Other Applications
358(1)
References
358(3)
6 Camera Systems in Machine Vision 361(66)
Horst Mattfeldt, Allied Vision Technologies GmbH
6.1 Camera Technology
361(2)
6.1.1 History in Brief
361(1)
6.1.2 Machine Vision versus Closed Circuit Television (CCTV)
362(1)
6.2 Sensor Technologies
363(9)
6.2.1 Spatial Differentiation: 1D and 2D
364(1)
6.2.2 CCD Technology
364(1)
6.2.3 Full Frame Principle
365(1)
6.2.4 Frame Transfer Principle
366(1)
6.2.5 Interline Transfer
366(6)
6.2.5.1 Interlaced Scan Interline Transfer
367(2)
6.2.5.2 Frame Readout
369(1)
6.2.5.3 Progressive Scan Interline Transfer
370(2)
6.3 CCD Image Artifacts
372(1)
6.3.1 Blooming
372(1)
6.3.2 Smear
372(1)
6.4 CMOS Image Sensor
373(10)
6.4.1 Advantages of CMOS Sensors
374(2)
6.4.2 CMOS Sensor Shutter Concepts
376(7)
6.4.2.1 Comparison of CMOS versus CCD
378(1)
6.4.2.2 Integration Complexity of CDD versus CMOS Camera Technology
379(1)
6.4.2.3 Video Standards
379(1)
6.4.2.4 Sensor Sizes and Dimensions
380(1)
6.4.2.5 Sony HAD Technology
381(1)
6.4.2.6 Sony SuperHAD Technology
381(1)
6.4.2.7 Sony EXView HAD Technology
381(2)
6.5 Block Diagrams and their Description
383(10)
6.5.1 Block Diagram of a Progressive Scan Analog Camera
383(6)
6.5.1.1 CCD Read-Out Clocks
383(3)
6.5.1.2 Spectral Sensitivity
386(1)
6.5.1.3 Analog Signal Processing
387(1)
6.5.1.4 Camera and Frame Grabber
388(1)
6.5.2 Block Diagram of Color Camera with Digital Image Processing
389(4)
6.5.2.1 Bayer™ Complementary Color Filter Array
389(1)
6.5.2.2 Complementary Color Filters Spectral Sensitivity
390(1)
6.5.2.3 Generation of Color Signals
390(3)
6.6 Digital Cameras
393(14)
6.6.1 Black and White Digital Cameras
393(3)
6.6.1.1 B/W Sensor and Processing
394(2)
6.6.2 Color Digital Cameras
396(11)
6.6.2.1 Analog Processing
396(1)
6.6.2.2 One-Chip Color Processing
396(2)
6.6.2.3 Analog Front End (AFE)
398(1)
6.6.2.4 One Push White Balance
399(1)
6.6.2.5 Automatic White Balance
400(1)
6.6.2.6 Manual Gain
400(1)
6.6.2.7 Auto Shutter/Gain
400(1)
6.6.2.8 A/D Conversion
400(1)
6.6.2.9 Lookup Table (LUT ) and Gamma Function
401(1)
6.6.2.10 Shading Correction
402(1)
6.6.2.11 Horizontal Mirror Function
403(1)
6.6.2.12 Frame Memory and Deferred Image Transport
404(1)
6.6.2.13 Color Interpolation
404(2)
6.6.2.14 Color Correction
406(1)
6.6.2.15 RGB to YUV Conversion
406(1)
6.6.2.16 Binning versus Area of Interest (AOI)
406(1)
6.7 Controlling Image Capture
407(11)
6.7.1 Hardware Trigger Modes
408(2)
6.7.1.1 Latency (Jitter) Aspects
409(1)
6.7.2 Pixel Data
410(1)
6.7.3 Data Transmission
411(1)
6.7.4 IEEE-1394 Port Pin Assignment
412(2)
6.7.5 Operating the Camera
414(1)
6.7.6 HiRose Jack Pin Assignment
414(1)
6.7.7 Frame Rates and Bandwidth
415(3)
6.8 Configuration of the Camera
418(2)
6.8.1 Camera Status Register
418(2)
6.9 Camera Noise¹
420(6)
6.9.1 Photon Noise
421(1)
6.9.2 Dark Current Noise
421(1)
6.9.3 Photo Response Nonuniformity (PRNU)
422(1)
6.9.4 Reset Noise
422(1)
6.9.5 1/f Noise (Amplifier Noise)
422(1)
6.9.6 Quantization Noise
423(1)
6.9.7 Noise Floor
423(1)
6.9.8 Dynamic Range
423(1)
6.9.9 Signal to Noise Ratio
424(1)
6.10 Digital Interfaces
424(2)
References
426(1)
7 Camera Computer Interfaces 427(84)
Tony Iglesias, Anita Salmon, Johann Scholtz, Robert Hedegore, Julianna Borgendale, Brent Runnels, Nathan McKimpson, National Instruments
7.1 Overview
427(2)
7.2 Analog Camera Buses
429(5)
7.2.1 Analog Video Signal
429(1)
7.2.2 Interlaced Video
430(1)
7.2.3 Progressive Scan Video
431(1)
7.2.4 Timing Signals
431(1)
7.2.5 Analog Image Acquisition
432(1)
7.2.6 S-Video
432(1)
7.2.7 RGB
433(1)
7.2.8 Analog Connectors
433(1)
7.3 Parallel Digital Camera Buses
434(6)
7.3.1 Digital Video Transmission
434(1)
7.3.2 Taps
434(2)
7.3.3 Differential Signaling
436(1)
7.3.4 Line Scan
436(1)
7.3.5 Parallel Digital Connectors
437(1)
7.3.6 Camera Link
437(2)
7.3.7 Camera Link Signals
439(1)
7.3.7.1 Camera Link Connectors
440(1)
7.4 Standard PC Buses
440(13)
7.4.1 USB
440(2)
7.4.1.1 USB for Machine Vision
442(1)
7.4.2 IEEE 1394 (FireWire®)
442(8)
7.4.2.1 IEEE 1394 for Machine Vision
445(5)
7.4.3 Gigabit Ethernet (IEEE 802.3z)
450(3)
7.4.3.1 Gigabit Ethernet for Machine Vision
451(2)
7.5 Choosing a Camera Bus
453(9)
7.5.1 Bandwidth
454(1)
7.5.2 Resolution
455(2)
7.5.3 Frame Rate
457(1)
7.5.4 Cables
457(1)
7.5.5 Line Scan
458(1)
7.5.6 Reliability
458(2)
7.5.7 Summary of Camera Bus Specifications
460(1)
7.5.8 Sample Use Cases
460(2)
7.5.8.1 Manufacturing inspection
460(1)
7.5.8.2 LCD inspection
461(1)
7.5.8.3 Security
461(1)
7.6 Computer Buses
462(10)
7.6.1 ISA/EISA
462(2)
7.6.2 PCI/CompactPCI/PXI
464(1)
7.6.3 PCI-X
465(1)
7.6.4 PCI Express/CompactPCI Express/PXI Express
466(3)
7.6.5 Throughput
469(2)
7.6.6 Prevalence and Lifetime
471(1)
7.6.7 Cost
472(1)
7.7 Choosing a Computer Bus
472(3)
7.7.1 Determine Throughput Requirements
472(2)
7.7.2 Applying the Throughput Requirements
474(1)
7.8 Driver Software
475(20)
7.8.1 Application Programming Interface
476(3)
7.8.2 Supported Platforms
479(1)
7.8.3 Performance
479(2)
7.8.4 Utility Functions
481(1)
7.8.5 Acquisition Mode
481(4)
7.8.5.1 Snap
481(1)
7.8.5.2 Grab
482(1)
7.8.5.3 Sequence
483(1)
7.8.5.4 Ring
483(2)
7.8.6 Image Representation
485(7)
7.8.6.1 Image Representation in Memory
485(4)
7.8.6.2 Bayer Color Encoding
489(2)
7.8.6.3 Image Representation on Disk
491(1)
7.8.7 Image Display
492(3)
7.8.7.1 Understanding Display Modes
492(2)
7.8.7.2 Palettes
494(1)
7.8.7.3 Nondestructive Overlays
494(1)
7.9 Features of a Machine Vision System
495(16)
7.9.1 Image Reconstruction
496(1)
7.9.2 Timing and Triggering
497(3)
7.9.3 Memory Handling
500(2)
7.9.4 Additional Features
502(6)
7.9.4.1 Look-up Tables
502(2)
7.9.4.2 Region of Interest
504(1)
7.9.4.3 Color Space Conversion
505(2)
7.9.4.4 Shading Correction
507(1)
7.9.5 Summary
508(3)
8 Machine Vision Algorithms 511(182)
Dr. Carsten Steger, MVTec Software GmbH
8.1 Fundamental Data Structures
511(5)
8.1.1 Images
511(2)
8.1.2 Regions
513(2)
8.1.3 Subpixel-Precise Contours
515(1)
8.2 Image Enhancement
516(20)
8.2.1 Gray Value Transformations
516(3)
8.2.2 Radiometric Calibration
519(6)
8.2.3 Image Smoothing
525(11)
8.3 Geometric Transformations
536(8)
8.3.1 Affine Transformations
537(1)
8.3.2 Projective Transformations
538(1)
8.3.3 Image Transformations
539(5)
8.3.4 Polar Transformations
544(1)
8.4 Image Segmentation
544(11)
8.4.1 Thresholding
545(6)
8.4.2 Extraction of Connected Components
551(2)
8.4.3 Subpixel-Precise Thresholding
553(2)
8.5 Feature Extraction
555(11)
8.5.1 Region Features
556(4)
8.5.2 Gray Value Features
560(5)
8.5.3 Contour Features
565(1)
8.6 Morphology
566(21)
8.6.1 Region Morphology
566(17)
8.6.2 Gray Value Morphology
583(4)
8.7 Edge Extraction
587(25)
8.7.1 Definition of Edges in 1D and 2D
587(4)
8.7.2 1D Edge Extraction
591(6)
8.7.3 2D Edge Extraction
597(8)
8.7.4 Accuracy of Edges
605(7)
8.8 Segmentation and Fitting of Geometric Primitives
612(12)
8.8.1 Fitting Lines
613(4)
8.8.2 Fitting Circles
617(2)
8.8.3 Fitting Ellipses
619(1)
8.8.4 Segmentation of Contours into Lines, Circles, and Ellipses
620(4)
8.9 Template Matching
624(29)
8.9.1 Gray-Value-Based Template Matching
626(6)
8.9.2 Matching Using Image Pyramids
632(4)
8.9.3 Subpixel-Accurate Gray-Value-Based Matching
636(1)
8.9.4 Template Matching with Rotations and Scalings
637(1)
8.9.5 Robust Template Matching
638(15)
8.10 Stereo Reconstruction
653(13)
8.10.1 Stereo Geometry
654(8)
8.10.2 Stereo Matching
662(4)
8.11 Optical Character Recognition
666(22)
8.11.1 Character Segmentation
667(2)
8.11.2 Feature Extraction
669(3)
8.11.3 Classification
672(16)
References
688(5)
9 Machine Vision in Manufacturing 693(88)
Dr.-Ing. Peter Waszkewitz, Robert Bosch GmbH
9.1 Introduction
693(1)
9.2 Application Categories
694(6)
9.2.1 Types of Tasks
694(2)
9.2.2 Types of Production
696(2)
9.2.2.1 Discrete Unit Production Versus Continuous Flow
697(1)
9.2.3 Types of Evaluations
698(1)
9.2.4 Value-Adding Machine Vision
699(1)
9.3 System Categories
700(8)
9.3.1 Common Types of Systems
700(1)
9.3.2 Sensors
701(1)
9.3.3 Vision Sensors
702(1)
9.3.4 Compact Systems
703(1)
9.3.5 Vision Controllers
704(1)
9.3.6 PC-Based Systems
704(3)
9.3.7 Summary
707(1)
9.4 Integration and Interfaces
708(2)
9.5 Mechanical Interfaces
710(10)
9.5.1 Dimensions and Fixation
711(1)
9.5.2 Working Distances
711(1)
9.5.3 Position Tolerances
712(1)
9.5.4 Forced Constraints
713(1)
9.5.5 Additional Sensor Requirements
713(1)
9.5.6 Additional Motion Requirements
714(1)
9.5.7 Environmental Conditions
715(1)
9.5.8 Reproducibility
716(2)
9.5.9 Gauge Capability
718(2)
9.6 Electrical Interfaces
720(5)
9.6.1 Wiring and Movement
721(1)
9.6.2 Power Supply
721(1)
9.6.3 Internal Data Connections
722(2)
9.6.4 External Data Connections
724(1)
9.7 Information Interfaces
725(9)
9.7.1 Interfaces and Standardization
725(1)
9.7.2 Traceability
726(1)
9.7.3 Types of Data and Data Transport
727(1)
9.7.4 Control Signals
727(1)
9.7.5 Result and Parameter Data
728(1)
9.7.6 Mass Data
729(1)
9.7.7 Digital I/O
729(1)
9.7.8 Field Bus
730(1)
9.7.9 Serial Interfaces
730(1)
9.7.10 Network
731(1)
9.7.11 Files
732(1)
9.7.12 Time and Integrity Considerations
732(2)
9.8 Temporal Interfaces
734(9)
9.8.1 Discrete Motion Production
735(2)
9.8.2 Continuous Motion Production
737(3)
9.8.3 Line-Scan Processing
740(3)
9.9 Human—Machine Interfaces
743(9)
9.9.1 Interfaces for Engineering Vision Systems
743(2)
9.9.2 Runtime Interface
745(4)
9.9.3 Remote Maintenance
749(1)
9.9.4 Offline Setup
750(2)
9.10 Industrial Case Studies
752(17)
9.10.1 Glue Check under UV Light
752(2)
9.10.1.1 Solution
752(2)
9.10.2 Completeness Check
754(3)
9.10.3 Multiple Position and Completeness Check
757(3)
9.10.4 Pin Type Verification
760(3)
9.10.5 Robot Guidance
763(3)
9.10.6 Type and Result Data Management
766(3)
9.11 Constraints and Conditions
769(6)
9.11.1 Inspection Task Requirements
769(1)
9.11.2 Circumstantial Requirements
770(3)
9.11.3 Limits and Prospects
773(2)
References
775(6)
Index 781

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program