9781118541838

Handbook of Polymer Crystallization

by ;
  • ISBN13:

    9781118541838

  • ISBN10:

    1118541839

  • Edition: 1st
  • Format: eBook
  • Copyright: 2013-07-10
  • Publisher: Wiley

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $207.99 Save up to $20.80
  • Rent Book $187.19
    Add to Cart Free Shipping

    TERM
    PRICE
    DUE
    USUALLY SHIPS IN 3-4 BUSINESS DAYS

Supplemental Materials

What is included with this book?

  • The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.
  • The Rental copy of this book is not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Summary

Polymeric crystals are more complex in nature than other materials' crystal structures due to significant structural disorder present. The only comprehensive reference on polymer crystallization, Handbook of Polymer Crystallization provides readers with a broad, in-depth guide on the subject, covering the numerous problems encountered during crystallization as well as solutions to resolve those problems to achieve the desired result. Edited by leading authorities in the field, topics explored include neat polymers, heterogeneous systems, polymer blends, polymer composites orientation induced crystallization, crystallization in nanocomposites, and crystallization in complex thermal processing conditions.

Author Biography

DR. EWA PIORKOWSKA, is Professor and the Head of the Department of Polymer Structure at the Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Poland. Her research interests include crystallization, structure and properties of polymers, polymer blends, composites and nanocomposites.

DR. GREGORY C. RUTLEDGE, is the Lammot du Pont Professor in the Department of Chemical Engineering at the Massachusetts Institute of Technology. His research interests include polymer science and engineering, statistical thermodynamics, molecular simulation, and nanotechnology.

Table of Contents

Preface
E. Piorkowska, G.C. Rutledge

Contributors

1. Experimental techniques
B. Hsiao, Feng Zuo, Yimin Mao, C. Schick

2 Introduction

2.1 Optical Microscopy

2.1.1 Reflection and Transmission Microscopy

2.1.2 Contrast Modes

2.1.2.1 Polarized Optical Microscopy

2.1.2.2 Phase Contrast Optical Microscopy

2.1.2.3 Near-Field Scanning Optical Microscopy

2.1.3 Selected Applications

2.2 Electron Microscopy

2.2.1 Imaging Principle

2.2.1.1 Transmission Electron Microscopy

2.2.1.2 Scanning Electron Microscopy

2.2.2 Sample Preparation

2.2.2.1 Thin-Film Preparation

2.2.2.2 Conducting Problem

2.2.2.3 Contrast Problem

2.2.3 Relevant Experimental Techniques

2.2.3.1 Environmental SEM

2.2.3.2 High Resolution EM

2.2.3.3 Electron Diffraction

2.2.4 Selected Applications

2.3 Atomic Force Microscopy

2.3.1 Imaging Principle

2.3.2 Scanning Modes

2.3.3 Comparison between AFM and EM

2.3.4 Recent Development: Video AFM

2.3.5 Selected Applications

2.4 Nuclear Magnetic Resonance

2.4.1 Chemical Shift

2.4.2 Relevant Techniques

2.4.2.1 Pulsed Fourier Transform NMR

2.4.2.2 Dipolar Decoupling

2.4.2.3 Magic Angle Spinning

2.4.2.4 Cross Polarization

2.4.3 Recent Development: Multi-Dimensional NMR

2.4.4 Selected Applications

2.5 Scattering Techniques: X-ray, Light and Neutron

2.5.1 Wide-Angle X-ray Diffraction

2.5.1.1 Determination of Crystallinity

2.5.1.2 Degree of Orientation

2.5.1.3 Determination of Crystal Dimension

2.5.2 Small-Angle X-ray Scattering

2.5.2.1 Correlation Function

2.5.2.2 Interface Distribution

2.5.2.3 Interpretation of Anisotropic 2D Scattering Pattern

2.5.3 Small-Angle Light Scattering

2.5.3.1 Spherulite Radius

2.5.3.2 Optical Sign of Spherulite

2.5.3.3 Ring-Banded Spherulite

2.5.3.4 Deformed Spherulite

2.5.3.5 Anisotropic Fluctuation Approach

2.5.4 Small-Angle Neutron Scattering

2.6 Differential Scanning Calorimetry

2.6.1 Modes of Operation

2.6.1.1 Thermal Scan

2.6.1.2 Isothermal Heat Flow Rate Measurements

2.6.1.3 Temperature Modulation

2.6.1.4 Fast Scanning Calorimetry

2.6.2 Determination of Degree of Crystallinity

2. Crystal structures of polymers
C. De Rosa, F. Auriemma

3.1. Constitution and configuration of polymer chains

3.2. Conformation of polymer chains in crystals and conformational polymorphism

3.3. Packing of macromolecules in polymer crystals

3.4. Symmetry breaking

3.5. Packing effects on the conformation of polymer chains in the crystals:  the case of aliphatic polyamides

3.6. Defects and disorder in polymer crystals

3.6.1 Substitutional isomorphism of different chains

3.6.2 Substitutional isomorphism of different monomeric units

3.6.3 Conformational isomorphism

3.6.4 Disorder in the stacking of ordered layers (stacking fault disorder)

3.7. Crystal habits

3.7.1 Rounded lateral habits

3.8. References

3. Structure of polycrystalline aggregates
B. Crist

4.1  Introduction

4.2  Crystals Grown from Solution

4.2.1  Facetted Monolayer Crystals from Dilute Solution

4.2.2  Dendritic Crystals from Dilute Solution

4.2.3  Spiral Growths in Dilute Solution

4.2.4  Concentrated Solutions

4.3  Crystals Grown in Molten Films

4.3.1  Structures in Thin Films

4.3.2  Structures in Ultra-thin Films

4.3.3   Edge-on Lamellae from Molten Films

4.4  Spherulites

4.4.1  Optical Properties of Spherulites

4.4.2  Occurrence of Spherulites

4.4.3  Development of Spherulites

4.4.4  Banded Spherulites and Lamellar Twist

4.5. Acknowledgements

4.6  References

4. Polymer nucleation
M. Hikosaka, K.N. Okada

5.1          Introduction

5.2          Classical nucleation theory (CNT)

5.2.1      Nucleation rate (I)

5.2.2      Free energy for formation of a nucleus, ?'G(N)

5.2.3      Free energy necessary for formation of a critical nucleus (?'G*)

5.2.4      Shape of a nucleus is related to kinetic parameters

5.2.5      Diffusion

5.3          Direct observation of nano-nucleation by synchrotron radiation

5.3.1      Introduction and experimental

5.3.2      Direct observation of nano-nucleation by SAXS

5.3.3      Extended Guinier plot method and iteration method

5.3.4      Kinetic parameters and size distribution of nano-nucleus

5.3.5      Real image of nano-nucleation

5.3.6      Supercooling dependence of nano-nucleation

5.3.7      Relationship between nano-nucleation and macro-crystallization

5.4          Improvement of nucleation theory

5.4.1      Introduction

5.4.2      Nucleation theory based on direct observation of nucleation

5.4.3      Confirmation of the new theory by overall crystallinity

5.5          Homogeneous nucleation from the bulk melt under elongational flow

5.5.1      Introduction and experimental

5.5.2      Formulation of elongational strain rate, 

5.5.3      "Nano-oriented crystals (NOCs)"

5.5.4      Evidence of homogeneous nucleation

5.5.5      Nano-nucleation results in ultra high performance

5.6          Heterogeneous nucleation

5.6.1      Introduction

5.6.2      Experimental

5.6.3      Role of epitaxy in heterogeneous nucleation

5.6.4      Acceleration mechanism of nucleation of polymers by nano-sizing of nucleating agent

5.7          Effect of entanglement density on the nucleation rate

5.7.1 Introduction and experimental

5.7.2      Increase of ??e leads to decrease of I

5.7.3      Change of ??e against ?'t

5.7.4      Two-step entangling model

5.8          Conclusion

5.9          Acknowledgement

5.10        References

5. Growth of polymer crystals
K. Tashiro

6.1. Introduction

6.1.1. Complicated Crystallization Behavior of Polymers

6.1.1.1. Morphologies

6.1.1.2. Crystallization of Blend Samples

6.1.1.3. Epitaxial Crystallization

6.1.1.4. Additional Phase Transitions during Crystallization

6.2. Growth of Polymer Crystals from Solutions

6.2.1. Single Crystals

6.2.2. Crystallization from the Solution under Shear

6.2.3. Solution Casting Method

6..3. Growth Polymer Crystals from Melt

6.3.1. Positive and Negative Spherulites

6.3.2. Spherulite Morpholgy and Crystalline Modification

6.3.3. Spherulite of Blend Samples

6.4. Crystallization Mechanism of Polymer

6.4.1.     Basic Theory of Crystallization of Polymer

6.4.1.1. Primary Nucleation

6.4.1.2. Growth of Secondary Nuclei

6.4.1.3. Crystal Growth Rate

6.4.1.4. Regimes

6.4.1.5. Thickening Phenomena of Lamellae

6.4.1.6. Molecular Simulation of Crystallization

6.4.2. Growth Rate of Spherulites

6.4.2.1. Isothermal Crystallization

6.4.2.2. Non-isothermal Crystallization

6..5. Microscopically-viewed Structural Evolution in the Growing Polymer Crystals

6.5.1. Experimental Techniques

6.5.1.1. Time-resolved Measurements

6.5.2. Structural Evolution in Isothermal Crystallization

6.5.2.1.                 Helical Regularization and Domain Formation of isotactic Polypropylene (iPP)

6.5.2.2.                 Generation of Disordered Phase in Isothermal Crystallization of Polyethylene

6.5.2.3.                 Generation of Tie Chains in Isothermal Crystallization of Polyoxymethylene

6.5.2.4.                 Role of Hydrogen Bonds in Isothermal Crystallization of Aliphatic Nylons

6.5.2.5. Crystallization and Chain Folding Mode

6.5.3. Shear-induced Crystallization of the Melt

6.6. Crystallization upon Heating from the Glassy State

6.6.1. Cold Crystallization

6.6.2. Solvent-induced Crystallization of Polymer Glass

6.7. Crystallization Phenomenon induced by Tensile Force

6.8. Photo-induced Formation and Growth of Polymer Crystals

6.9. Conclusion

6. Computer modeling of polymer crystallization
G.C. Rutledge

7.1          Introduction

7.2          Methods

7.2.1      Molecular Dynamics

7.2.2      Langevin Dynamics

7.2.3      Monte Carlo

7.2.4      Kinetic Monte Carlo

7.3          Single Chain Behavior in Crystallization

7.3.1      Solid-on-Solid Models

7.3.2      Molecular and Langevin Dynamics

7.4          Crystallization from the Melt

7.4.1      Lattice Monte Carlo Simulations

7.4.2      Molecular Dynamics using Coarse-Grained Models

7.4.3      Molecular Dynamics using Atomistic Models

7.5          Crystallization under Deformation or Flow

7.6          Concluding Remarks

7. Overall crystallization kinetics
E. Piorkowska,  A. Galeski

8.1       Introduction

8.2       Measurements

8.3       Simulation

8.4       Theories: isothermal and nonisothermal crystallization

8.4.1.   Introductory remarks

8.4.2.   Extended volume approach

8.4.3.   Probabilistic approach

8.4.4.   Isokinetic model

8.4.5.   Rate equations

8.5.     Complex crystallization conditions – general models

8.6.      Factors influencing the overall crystallization kinetics.

8.6.1.   Crystallization in a uniform temperature field

8.6.2.   Crystallization in a temperature gradient

8.6.3.   Crystallization in a confined space

8.6.4.    Flow induced crystallization

8.7.     Analysis of crystallization data

8.7.1.   Isothermal crystallization

8.7.2.   Nonisothermal crystallization

8.8.     Conclusions

8. Epitaxial crystallization of polymers: means and issues
A.Thierry,  B.Lotz, 

9.1 Introduction and History

9.2. Means of investigation of epitaxial crystallization

9.2.1. Global techniques

9.2.2. Thin film techniques

9.2.3. Sample preparation techniques    

9.2.4 Other samples and investigation procedures

9.3. Epitaxial crystallization of polymers

9.3.1 General principles

9.3.2 Epitaxial crystallization of “linear” polymers

9.3.3. Epitaxy of helical polymers

9.3.3.1. Isotactic polypropylene

9.3.3.2. A case of self-epitaxy in polymers: epitaxy of isotactic polypropylene

9.3.3.3 Epitaxy of isotactic poly(1-butene)

9.3.4. Polymer/polymer epitaxy

9.3.4.1 Epitaxy between linear polymers

9.3.4.2 Epitaxy between linear and helical polymers

9.4. Epitaxial crystallization: Further issues and examples

9.4.1 Topographic versus lattice matching

9.4.1.1 The ac face of isotactic polypropylene

9.4.1.2. Forms I and II of syndiotactic polypropylene

9.4.2 Epitaxy of isotactic polypropylene on isotactic polyvinylcyclohexane

9.4.3 Epitaxy involving fold surfaces of polymer crystals

9.5 Epitaxial crystallization: some issues and applications

9.5.1 Epitaxial crystallization and the design of new nucleating agents

9.5.2 Epitaxial crystallization and the design of composite materials

9.5.3 Conformational and packing energy analysis of polymer epitaxy

9.5.4. Epitaxy as a means to generate oriented opto- or electro-active materials

9.6. Conclusion

9. Melting M. Pyda

10.1 Introduction to melting crystal polymers

10.2 Parameters of melting process

10.3 Change of conformation

10.4 Heat of fusion, Degree of Crystallinity

10.5 Equilibrium melting.

10.6 Other Factors affecting the melting temperature of polymer crystals.

10.7 Irreversible and Reversible melting,

10.8 Conclusions

10.9 References

10. Crystallization in polymer blends
M. Pracella

11.1        General Introduction    

11.2        Thermodynamics of Polymer Blends

11.2.1    General principles

11.3        Miscible Polymer Blends 

11.3.1    Introduction

11.3.2    Phase morphology

11.3.3    Crystal growth rate

11.3.4    Overall crystallization kinetics

11.3.5    Melting behaviour

11.3.6    Blends with partial miscibility

11.3.7    Crystallization behaviour of crystalline/amorphous blends

11.3.7.1 PEO/PMMA blends

11.3.8    Crystallization behaviour of crystalline/crystalline blends

11.3.8.1 Isotactic polypropylene/poly(1-butene) blends

11.3.8.2 Blends of polypropylene copolymers

11.4        Immiscible Polymer Blends

11.4.1    Introduction

11.4.2    Morphology and crystal nucleation

11.4.3    Crystal growth rate

11.4.4    Crystallization behaviour of immiscible blends

11.4.4.1 Polyethylene/polypropylene blends

11.5        Compatibilized Polymer Blends

11.5.1    Compatibilization methods

11.5.2    Morphology and phase interactions

11.5.3    Crystallization behaviour of compatibilized blends

11.5.3.1 Fractionated crystallization in compatibilized blends

11.6        Polymer Blends with Liquid Crystalline Components

11.6.1    Introduction

11.6.2    Mesomorphism and phase transition behaviour of liquid crystals (LCs) and liquid crystal polymers (LCPs)

11.6.3    Crystallization behaviour of Polymer/LC blends

11.6.4    Crystallization behaviour of Polymer/LCP blends

11.7        Concluding Remarks

11.8        Nomenclature

11.9        References

11. Crystallization in copolymers
R. Register, Sheng Li

12.1. Introduction. 

12.2. Crystallization in Statistical Copolymers

12.2.1 Flory’s Model

12.2.2 Solid-State Morphology

12.2.2.1 Supermolecular Structure

12.2.2.2 Lamellar Structure and Crystallite Size

12.2.2.3 Crystal Unit Cell Structure

12.2.3 Mechanical Properties

12.2.4 Crystallization Kinetics

12.2.5 Statistical Copolymers with Two Crystallizable Units

12.2.6 Crystallization Thermodynamics

12.3 Crystallization of Block Copolymers from Homogeneous or Weakly Segregated Melts

12.3.1 Solid-State Morphology

12.3.2 Crystallization-Driven Structure Formation

12.4 Summary

12.5 References

12. Crystallization in nano-confined systems
A. Muller, M.L. Arnal, A.T. Lorenzo

13.1.      Introduction

13.2.      Confined crystallization in block copolymers.

13.2.1    Crystallization within diblock copolymers that are strongly segregated or miscible and contain only one crystallizable component.

13.2.2    Crystallization within strongly segregated double crystalline diblock copolymers and triblock copolymers.

13.3.      Crystallization of droplet dispersions and polymer layers.

13.4.      Polymer blends.

13.4.1    Immiscible polymer blends.

13.4.2    Melt miscible blends.

13.5.      Modeling of confined crystallization of macromolecules

13.6.      Conclusions

13.7.      References

13. Crystallization in polymer composites and nanocomposites
E.Piorkowska

14.1        Introduction

14.2        Microcomposites with particulate fillers

14.3        Fiber-reinforced composites

14.4        Modeling of crystallization in fiber-reinforced composites

14,5        Nanocomposites

14.6        Conclusions

14. Flow-induced crystallization
G.W.M. Peters, L. Balzano, R.J.A Steenbakkers

15.0        Introduction

15.1        Shear induced crystallization:

15.1.1    Nature of crystallization precursors

15.2.      Crystallization during drawing.

15.2.1    Spinning

15.2.2    Elongation-induced crystallization; lab conditions

15.3.      Models of flow-induced crystallization.

15.3.1    Flow-enhanced crystallization

15.3.2    Flow-induced shish formation

15.3.3    Application to injection modeling

15. Crystallization in processing conditions
J. M. Haudin

16.1        Introduction

16.2        General effects of processing conditions on crystallization

16.2.1. Effects of flow

16.2.1.1 Thermodynamics and kinetics

16.2.1.2. Morphologies

16.2.2    Effects of pressure

16.2.3. Effects of cooling rate

16.2.4. Effects of a temperature gradient

16.2.4.1. General features

16.2.4.2. Physical models

16.2.4.3. Mathematical modelling

16.2.5. Effects of surfaces

16.3 Modeling

16.3.1. General framework

16.3.2 Simplified expressions

16.3.3. General systems of differential equations

16.4. Crystallization in some selected processes

16.4.1. Cast film extrusion

16.4.1.1. Presentation of the process

16.4.1.2. Thermomechanical model

16.4.1.3. Results of the calculations

16.4.1.4. Influence of processing on structure development

16.4.2. Fiber spinning

16.4.2.1. Presentation of the process

16.4.2.2. Characterization of crystalline orientation by X-ray diffraction

16.4.2.3. Typical experimental results and morphological models

16.4.2.4. Modeling

16.4.3. Film blowing

16.4.3.1. Presentation of the process

16.4.3.2. Orientation studies

16.4.3.3. Morphological models

16.4.3.4. Modeling

16.4.4. Injection molding

16.4.4.1. Presentation of the process

16.4.4.2. Typical experimental results

16.4.4.3. Morphological models

16.4.4.4. Modeling

16.5. Conclusion

Index

Rewards Program

Write a Review