did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9781575240503

Handbook of Tribology

by ;
  • ISBN13:

    9781575240503

  • ISBN10:

    1575240505

  • Format: Hardcover
  • Copyright: 1997-09-01
  • Publisher: Krieger Pub Co

Note: Supplemental materials are not guaranteed with Rental or Used book purchases.

Purchase Benefits

  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $162.25 Save up to $40.56
  • Buy Used
    $121.69
    Add to Cart Free Shipping Icon Free Shipping

    USUALLY SHIPS IN 2-4 BUSINESS DAYS

Supplemental Materials

What is included with this book?

Table of Contents

Preface xix
Chapter 1. Introduction
1.1
1.1 Liquid Lubrication
1.1(10)
1.1.1. Fatty Oils
1.9(1)
1.1.2. Petroleum-Based Oils
1.9(1)
1.1.3. Synthetic Oils
1.10(1)
1.1.4. Greases
1.10(1)
1.2. Solid Lubrication
1.11(3)
1.2.1. Bulk Solids
1.11(1)
1.2.2. Soft Coatings
1.12(1)
1.2.3. Hard Coatings
1.13(1)
1.3. Surface Treatments
1.14(1)
1.4. References
1.14
Chapter 2. Friction, Wear, and Lubrication
2.1
2.1. Friction
2.1(9)
2.1.1. Laws of Friction
2.1(1)
2.1.2. Sliding Friction
2.2(5)
2.1.2.1. Adhesion Component of Friction
2.2(3)
2.1.2.2. Ploughing Component of Friction
2.5(1)
2.1.2.3. Deformation Component of Friction
2.5(1)
2.1.2.4. Other Components of Friction
2.6(1)
2.1.3. Rolling Friction
2.7(3)
2.1.3.1. Adhesion
2.7(1)
2.1.3.2. Microslip
2.7(2)
2.1.3.3. Elastic Hysteresis
2.9(1)
2.1.3.4. Plastic Deformation
2.9(1)
2.1.4. Coefficients of Friction for Various Material Combinations
2.10(1)
2.2 Wear
2.10(15)
2.2.1. Adhesive Wear
2.13(5)
2.2.2. Abrasive Wear
2.18(1)
2.2.3. Fatigue Wear
2.18(2)
2.2.4. Corrosive Wear
2.20(1)
2.2.5. Fretting Wear
2.21(1)
2.2.6. Erosive Wear by Solid Particles and Fluids
2.21(2)
2.2.7. Erosive Wear by Cavitation
2.23(1)
2.2.8. Electrical Arc-Induced Wear
2.24(1)
2.3. Wear Prevention
2.25(4)
2.3.1. Reduction of Adhesive Wear
2.26(1)
2.3.2. Reduction of Abrasive Wear
2.27(1)
2.3.3. Reduction of Fatigue Wear
2.28(1)
2.3.4. Reduction of Erosive Wear
2.28(1)
2.3.5. Reduction of Electrical Arc-Induced Wear
2.29(1)
2.4. Lubrication
2.29(7)
2.4.1. Hydrostatic Lubrication
2.31(2)
2.4.2. Hydrodynamic Lubrication
2.33(1)
2.4.3. Elastohydrodynamic Lubrication
2.34(1)
2.4.4. Mixed Lubrication
2.34(1)
2.4.5. Boundary Lubrication
2.35(1)
2.4.6. Solid-Film Lubrication
2.36(1)
2.5. References
2.36
Chapter 3. Physics of Tribological Materials
3.1
3.1. Nature of Solid Surfaces
3.1(2)
3.2. The Shape of Surfaces
3.3(3)
3.3. Properties of Surfaces
3.6(9)
3.3.1. Solid-State Bounding
3.6(2)
3.3.2. Crystaline Structure
3.8(3)
3.3.3. Surface Defects
3.11(3)
3.3.3.1. Point Imperfections
3.11(1)
3.3.3.2. Line Imperfections
3.11(2)
3.3.3.3. Surface Imperfections
3.13(1)
3.4. Surface Interactions with Environment
3.14(5)
3.4.1. Surface Reconstruction
3.15(2)
3.4.2. Segregation
3.17(1)
3.4.3. Physisorption
3.17(1)
3.4.4. Chemisorption
3.18(1)
3.4.5. Compound Formation
3.19(1)
3.5. Phase Equilibria
3.19(3)
3.6. Microstructural Effects on Friction and Wear
3.22(12)
3.6.1. Effect of Microstructure on Friction
3.23(5)
3.6.2. Effect of Microstructure on Wear
3.28(6)
3.7. References
3.34
Chapter 4. Metals and Ceramics
4.1
4.1. Ferrous Metals
4.2(20)
4.1.1. Cast Irons
4.2(8)
4.1.1.1. Gray Cast Irons
4.7(1)
4.1.1.2. Nodular Cast Irons
4.7(2)
4.1.1.3. Malleable Cast Irons
4.9(1)
4.1.1.4. White Cast Irons
4.9(1)
4.1.1.5. Chilled Cast Irons
4.9(1)
4.1.1.6. High-Alloy Cast Iron
4.9(1)
4.1.2. Steels
4.10(11)
4.1.2.1. Plain Carbon Steels
4.14(1)
4.1.2.2. Low-Alloy Steels
4.14(4)
4.1.2.3. HSLA Steels
4.18(1)
4.1.2.4. Stainless Steels
4.18(1)
4.1.2.5. Tool Steels
4.19(2)
4.1.3. Ferrous Powder Metallurgy
4.21(1)
4.1.4. Iron-Based Superalloys
4.21(1)
4.2. Nonferrous Metals and Alloys
4.22(20)
4.2.1. Precious Metals
4.23(2)
4.2.2. Tin-and Lead-Based Alloys
4.25(1)
4.2.3. Copper-Based Alloys
4.25(4)
4.2.4. Aluminum-Based Alloys
4.29(2)
4.2.5. Cobalt-Based Alloys
4.31(2)
4.2.6. Nickel-Based Alloys
4.33(5)
4.2.7. Refractory Metals
4.38(1)
4.2.8. Titanium-Based Alloys
4.38(2)
4.2.9. Silicon
4.40(1)
4.2.10. Wear and Galling Characteristics of Metallic Pairs
4.40(2)
4.3. Ceramics and Cermets
4.42(37)
4.3.1. Classification and Properties of Ceramics and Cermets
4.49(25)
4.3.1.1. Diamond
4.52(11)
4.3.1.2. Carbides
4.63(2)
4.3.1.3. Nitrides
4.65(2)
4.3.1.4. Borides
4.67(1)
4.3.1.5. Silicides
4.68(1)
4.3.1.6. Oxides
4.68(3)
4.3.1.7. Cermets: Cemented Carbides
4.71(3)
4.3.2. Friction and Wear Properties of Ceramics
4.74(5)
4.4. Ceramic-Metal Composites
4.79(5)
4.4.1. Metal-Matrix Composites
4.79(3)
4.4.1.1. Ceramic Whisker-Reinforced Metals
4.81(1)
4.4.1.2. Filament-Reinforced Metals
4.82(1)
4.4.2. Ceramic-Matrix Composites
4.82(2)
4.5. References
4.84
Chapter 5. Solid Lubricants and Self-Lubricating Solids
5.1
5.1. Carbon and Graphite
5.1(11)
5.1.1. Amorphous Carbon
5.2(2)
5.1.2. Graphite
5.4(8)
5.1.2.1. Crystal Structure
5.4(1)
5.1.2.2. Lubrication Mechanism
5.5(1)
5.1.2.3. Carbon-Graphite Solids
5.6(2)
5.1.2.4. Dry Powders and Dispersions
5.8(3)
5.1.2.5. Graphite Solids for Structural Applications
5.11(1)
5.2. Molybdenum Disulfide (MoS(2)) and Other Dichalcogenides
5.12(13)
5.2.1. Crystal Structure
5.15(1)
5.2.2. Lubrication Properties
5.15(6)
5.2.3. Dry Powders and Dispersions
5.21(2)
5.2.4. Solids Impregnated with MoS(2)
5.23(2)
5.3. Polymers
5.25(28)
5.3.1. Plastics
5.29(14)
5.3.1.1. Thermoplastic Plastics
5.29(11)
5.3.1.2. Thermosetting Plastics
5.40(3)
5.3.2. Elastomers
5.43(10)
5.3.2.1. Natural Rubber
5.44(1)
5.3.2.2. Synthetic Natural Rubber
5.44(1)
5.3.2.3. Styrene-Butadiene Rubber (SBR)
5.44(1)
5.3.2.4. Butadiene-Acrylonitrile Rubber (Butyl)
5.45(1)
5.3.2.5. Ethylene Propylene (EP)
5.45(3)
5.3.2.6. Chloroprene (Neoprene)
5.48(1)
5.3.2.7. Butadiene-Acrylonitrile (Buna-N, Nitrile, or NBR)
5.48(1)
5.3.2.8. Polyacrylate
5.49(1)
5.3.2.9. Fluoroelastomers
5.49(1)
5.3.2.10. Silicone
5.50(1)
5.3.2.11. Polyurethanes
5.51(1)
5.3.2.12. Copolyesters
5.52(1)
5.3.2.13. Olefins
5.52(1)
5.4. Polymer Composites
5.53(26)
5.4.1. Plastic Composites
5.55(19)
5.4.1.1. Solid Fillers
5.55(18)
5.4.1.2. Liquid-Lubricant Fillers
5.73(1)
5.4.2. Elastomer Composites
5.74(3)
5.4.3. Polymer Dispersions in Liquids
5.77(2)
5.5. References
5.79(9)
Appendix 5.A. Wear Behavior Characterization of Solid Lubricants and Self-Lubricating Solids
5.88
Chapter 6. Coating Deposition and Surface Treatment Techniques: Classification
6.1
6.1. Coating Deposition Techniques
6.1(16)
6.1.1. Hard Facing
6.6(4)
6.1.1.1. Thermal Spraying
6.6(1)
6.1.1.2. Welding
6.7(2)
6.1.1.3. Cladding
6.9(1)
6.1.2. Vapor Deposition
6.10(3)
6.1.2.1. Physical Vapor Deposition
6.10(2)
6.1.2.2. Chemical Vapor Deposition
6.12(1)
6.1.2.3. Physical-Chemical Vapor Deposition
6.12(1)
6.1.3. Miscellaneous Techniques
6.13(4)
6.1.3.1. Atomized Liquid Spray Coatings
6.13(1)
6.1.3.2. Dip Coatings
6.14(1)
6.1.3.3. Fluidized-Bed Coatings
6.14(1)
6.1.3.4. Spin-On Coatings
6.14(1)
6.1.3.5. Brush, Pad, and Roller Coatings
6.14(1)
6.1.3.6. Sol-Gel Method
6.14(1)
6.1.3.7. Screening and Lithography
6.14(1)
6.1.3.8. Electrochemical Deposition
6.15(1)
6.1.3.9. Chemical Deposition
6.15(1)
6.1.3.10. Chemical Conversion Coatings
6.15(2)
6.1.3.11. Intermetallic Compound Coatings
6.17(1)
6.1.3.12. Spark Hardening
6.17(1)
6.2. Surface Treatment Techniques
6.17(5)
6.2.1. Microstructural Treatments
6.18(2)
6.2.1.1. Induction Hardening
6.19(1)
6.2.1.2. Flame Hardening
6.19(1)
6.2.1.3. Laser Hardening
6.19(1)
6.2.1.4. Electron Beam Hardening
6.19(1)
6.2.1.5. Chill Casting
6.19(1)
6.2.1.6. Work Hardening
6.19(1)
6.2.2. Diffusion Treatments
6.20(2)
6.2.2.1. Carburizing
6.20(1)
6.2.2.2. Carbonitriding
6.20(1)
6.2.2.3. Nitriding
6.21(1)
6.2.2.4. Nitrocarburizing
6.21(1)
6.2.2.5. Boriding
6.21(1)
6.2.2.6. Chromizing
6.21(1)
6.2.2.7. Aluminizing
6.21(1)
6.2.2.8. Siliconizing
6.21(1)
6.2.2.9. Sherardizing
6.22(1)
6.2.3. Implantation Treatments
6.22(1)
6.2.3.1. Ion Implantation
6.22(1)
6.2.3.2. Ion Beam Mixing
6.22(1)
6.3. Criteria for Selecting Coating Material/Deposition and Surface Treatment Techniques
6.22(5)
6.4. References
6.27
Chapter 7. Surface Preparation for Coating Deposition
7.1
7.1. Cleaning
7.2(11)
7.1.1. Solvent Cleaning
7.6(3)
7.1.2. Emulsion Cleaning
7.9(1)
7.1.3. Alkaline Cleaning
7.9(1)
7.1.4. Acid Cleaning
7.10(1)
7.1.5. Pickling
7.10(1)
7.1.6. Salt Bath Descaling
7.11(1)
7.1.7. Ultrasonic Cleaning
7.12(1)
7.1.8. Plasma Cleaning
7.12(1)
7.2. Roughening
7.13(5)
7.2.1. Abrasive Blasting
7.14(1)
7.2.2. Barrel Finishing
7.15(1)
7.2.3. Mechanical Polishing and Buffing
7.15(2)
7.2.4. Chemical Etching
7.17(1)
7.2.5. Electropolishing or Electroetching
7.17(1)
7.3. Monitoring Surface Cleaning and Roughening
7.18(4)
7.4. References
7.22
Chapter 8. Coating Deposition by Hard Facing
8.1
8.1. Thermal Spraying
8.7(20)
8.1.1. Flame Spraying
8.8(2)
8.1.2. Spray-and-Fuse Process
8.11(1)
8.1.3. Plasma Arc Spraying
8.12(1)
8.1.4. Low-Pressure Plasma Spraying
8.13(2)
8.1.5. Detonation-Gun Spraying
8.15(3)
8.1.6. Electric Arc Spraying
8.18(1)
8.1.7. Coatings Deposited by Thermal Spraying
8.19(8)
8.1.7.1. Coating Materials
8.19(2)
8.1.7.2. Deposition Process Parameters
8.21(1)
8.1.7.3. Coating Adhesion
8.21(3)
8.1.7.4. Substrate Pretreatments
8.24(1)
8.1.7.5. Coating Posttreatments
8.25(1)
8.1.7.6. Coating Microstructure
8.26(1)
8.2. Welding
8.27(15)
8.2.1. Oxyfuel Gas Welding
8.29(1)
8.2.2. Electric Arc Welding
8.29(6)
8.2.2.1. Shielded Metal Arc Welding
8.31(1)
8.2.2.2. Submerged Arc Welding
8.32(1)
8.2.2.3. Electroslag Welding
8.33(1)
8.2.2.4. Self-Shielded Arc Welding
8.33(1)
8.2.2.5. Gas Metal Arc Welding
8.34(1)
8.2.2.6. Gas Tungsten Arc Welding
8.34(1)
8.2.3. Plasma Arc Welding
8.35(1)
8.2.4. Coatings Deposited by Welding
8.36(6)
8.2.4.1. Coating Materials
8.36(1)
8.2.4.2. Coating Filler Form
8.37(3)
8.2.4.3. Substrate Pretreatments
8.40(1)
8.2.4.4. Coating Posttreatments
8.40(1)
8.2.4.5. Coating Microstructure
8.41(1)
8.3. Cladding
8.42(16)
8.3.1. Mechanical Methods
8.43(3)
8.3.1.1. Roll Cladding
8.43(3)
8.3.1.2. Coextrusion Cladding
8.46(1)
8.3.2. Explosive Cladding
8.46(3)
8.3.3. Electromagnetic Impact Bonding
8.49(2)
8.3.4. Diffusion Bonding
8.51(1)
8.3.5. Braze Cladding
8.52(5)
8.3.5.1. Furnace Brazing
8.55(1)
8.3.5.2. Torch Brazing
8.55(1)
8.3.5.3. Resistance Brazing
8.55(1)
8.3.5.4. Dip Brazing
8.56(1)
8.3.5.5. Induction Brazing
8.56(1)
8.3.5.6. Laser Brazing
8.56(1)
8.3.6. Weld Cladding
8.57(1)
8.3.7. Laser Cladding
8.57(1)
8.4. References
8.58
Chapter 9. Coating Deposition from Vapor Phase
9.1
9.1. Evaporation
9.7(26)
9.1.1. Theory of Vacuum Evaporation
9.9(2)
9.1.2. Details of Evaporation Processes
9.11(7)
9.1.2.1. Direct Evaporation
9.11(1)
9.1.2.2. Reactive Evaporation
9.11(2)
9.1.2.3. Activated Reactive Evaporation
9.13(4)
9.1.2.4. Ion-Beam-Assisted Evaporation
9.17(1)
9.1.3. Vapor Sources to Support the Evaporant
9.18(1)
9.1.4. Heating Methods
9.19(7)
9.1.4.1. Resistive Heating
9.19(1)
9.1.4.2. Radiation Heating
9.20(1)
9.1.4.3. RF Induction Heating
9.21(1)
9.1.4.4. Electric Arc Heating
9.22(1)
9.1.4.5. Laser Heating
9.22(1)
9.1.4.6. Electron Beam Heating
9.23(3)
9.1.5. Evaporation of Multicomponent/Compound Coatings
9.26(1)
9.1.5.1. Multiple-Source Evaporation
9.26(1)
9.1.5.2. Flash Evaporation
9.26(1)
9.1.5.3. Continuous Feed
9.27(1)
9.1.6. Coatings Deposited by Evaporation
9.27(1)
9.1.6.1. Coating Materials
9.27(2)
9.1.6.2. Microstructure and Stoichiometry of Evaporated Coatings
9.29(3)
9.1.6.3. Properties of Evaporated Coatings
9.32(1)
9.2. Ion Plating
9.33(18)
9.2.1. Glow-Discharge Ion Plating
9.34(11)
9.2.1.1. Transport Kinetice Considerations
9.35(3)
9.2.1.2. Details of Glow-Discharge Ion Plating Processes
9.38(7)
9.2.2. Ion Beam Ion-Plating Processes
9.45(5)
9.2.2.1. Ion Sources
9.46(1)
9.2.2.2. Details of Ion Beam Ion-Plating Processes
9.47(3)
9.2.3. Coatings Deposited by Ion Plating
9.50(1)
9.2.3.1. Coating Materials
9.50(1)
9.2.3.2. Properties of Ion-Plated Coatings
9.51(1)
9.3. Sputtering
9.51(33)
9.3.1. Sputtering Mechanisms
9.55(3)
9.3.2. Details of Sputtering Processes
9.58(15)
9.3.2.1. Glow-Discharge Sputtering
9.59(11)
9.3.2.2. Ion Beam Sputtering
9.70(3)
9.3.3. Coatings Deposited by Sputtering
9.73(11)
9.3.3.1. Coating Materials
9.73(1)
9.3.3.2. Microstructure of Glow-Discharge Sputtered Coatings
9.74(3)
9.3.3.3. Residual Stresses
9.77(1)
9.3.3.4. Factors Influencing the Stoichiometry of Glow-Discharge Sputtered Compound Coatings
9.77(2)
9.3.3.5. Factors Influencing the Deposition Rate in Glow-Discharge Sputtering
9.79(1)
9.3.3.6. Properties of Glow-Discharge Sputtered Coatings
9.80(4)
9.4. Chemical Vapor Deposition
9.84(19)
9.4.1. Thermodynamic and Kinetic Considerations
9.86(2)
9.4.1.1. Thermodynamics
9.87(1)
9.4.1.2. Kinetics
9.87(1)
9.4.2. Examples of CVD Reactions
9.88(2)
9.4.2.1. Pyrolysis (Thermal Decomposition)
9.88(1)
9.4.2.2. Chemical Reactions
9.88(2)
9.4.3. Details of CVD Processes
9.90(6)
9.4.3.1. Conventional CVD Processes
9.90(2)
9.4.3.2. Low-Pressure CVD
9.92(2)
9.4.3.3. Laser-Induced CVD
9.94(1)
9.4.3.4. Electron Assisted CVD
9.94(2)
9.4.4. Coatings Deposited by CVD
9.96(7)
9.4.4.1. Coating Materials
9.96(3)
9.4.4.2. Microstructure of CVD Coatings
9.99(1)
9.4.4.3. Factors Influencing the Deposition Rate
9.100(2)
9.4.4.4. Properties of CVD Coatings
9.102(1)
9.5. Physical-Chemical Vapor Deposition
9.103(18)
9.5.1. Theory of PECVD
9.104(1)
9.5.1.1. Glow-Discharge Plasmas
9.104(1)
9.5.1.2. Transport Kinetics
9.105(1)
9.5.2. Details of PECVD Processes
9.105(7)
9.5.2.1. Coatings Deposited by PECVD
9.109(3)
9.5.3. Details of Reactive Pulsed Plasma Deposition Process
9.112(1)
9.5.4. Details of Chemical Vapor Polymerization Processes
9.113(8)
9.5.4.1. Mechanisms of Glow-Discharge Polymerization
9.115(2)
9.5.4.2. Details of Glow-Discharge Polymerization Processes
9.117(1)
9.5.4.3. Coating Deposited by Glow-Discharge Polymerization
9.118(3)
9.6. References
9.121(15)
Appendix 9.A. Glow-Discharge Plasmas
9.136(5)
9.A.1. Theory of DC Glow-Discharge Plasmas
9.136(2)
9.A.2. Potentials in RF Glow-Discharge Plasmas
9.138(3)
9.A.3. Enhanced Ionization Sources
9.141(1)
Appendix 9.B. Vacuum Systems Used for Vapor Deposition Processes
9.141
Chapter 10. Coating Deposition by Miscellaneous Techniques
10.1
10.1. Atomized Liquid Spray Processes
10.1(14)
10.1.1. Air Spray
10.6(2)
10.1.2. Hot Spray
10.8(1)
10.1.3. Airless Spray
10.8(1)
10.1.4. Electrostatic Spray
10.9(2)
10.1.5. Spray Pyrolysis
10.11(1)
10.1.6. Spray Fusion
10.12(1)
10.1.7. Coatings Deposited by Spray Processes
10.13(2)
10.2. Dip Coatings
10.15(1)
10.3. Fluidized-Bed Coatings
10.16(1)
10.4. Spin-On Coating
10.17(1)
10.5. Brush, Pad, and Roller Coatings
10.18(1)
10.6. Sol-Gel Coatings
10.19(1)
10.7. Screening and Lithography
10.20(2)
10.7.1. Screening
10.20(1)
10.7.2. Lithography
10.20(2)
10.8. Electrochemical Deposition
10.22(12)
10.8.1. The Electrolysis Process
10.22(2)
10.8.2. Electrochemistry of Electroplating
10.24(1)
10.8.3. Surface Preparation for Electroplating
10.25(1)
10.8.4. Electroplating of Metals
10.26(4)
10.8.4.1. Chromium
10.28(1)
10.8.4.2. Nickel
10.29(1)
10.8.5. Electroplating of Alloys
10.30(3)
10.8.6. Electroplated Composites
10.33(1)
10.8.7. Electrophoretic Deposits
10.33(1)
10.9. Chemical Deposition
10.34(6)
10.9.1. Chemical Reduction
10.35(1)
10.9.2. Electroless Deposition
10.35(5)
10.9.2.1. Nickel-Phosphorus (Ni-P)
10.36(2)
10.9.2.2. Nickel-Boron (Ni-B)
10.38(1)
10.9.2.3. Pure Ni
10.39(1)
10.9.2.4. Other metals
10.39(1)
10.9.2.5. Polyalloys
10.40(1)
10.9.2.6. Composites
10.40(1)
10.10. Chemical Conversion Coatings
10.40(16)
10.10.1. Phosphate Coatings
10.41(3)
10.10.1.1. Crystalline-Type Phosphate Coating
10.42(1)
10.10.1.2. Amorphous-Type Phosphate Coating
10.43(1)
10.10.1.3. Properties of Phosphate Coatings
10.43(1)
10.10.2. Chromate Conversion Coatings
10.44(1)
10.10.3. Oxide Coatings
10.45(1)
10.10.4. Anodizing
10.46(7)
10.10.4.1. Liquid Anodizing
10.48(1)
10.10.4.2. Gaseous Anodizing
10.48(5)
10.10.4.3. Properties of Anodized Aluminum
10.53(1)
10.10.5. Sulfide Coatings
10.53(2)
10.10.6. Metalliding
10.55(1)
10.11. Intermetallic Compound Coatings
10.56(4)
10.11.1. Coatings on Ferrous Metal Substrates
10.57(1)
10.11.2. Coatings on Nonferrous Substrates
10.57(3)
10.12. Spark Hardening
10.60(3)
10.13. References
10.63
Chapter 11. Surface Treatments by Thermal and Chemical Processes
11.1
11.1. Microstructural Treatments
11.3(13)
11.1.1. Induction Hardening
11.4(4)
11.1.2. Flame Hardening
11.8(1)
11.1.3. Laser Hardening
11.8(2)
11.1.4. Electron Beam Hardening
11.10(1)
11.1.5. Chill Casting
11.11(3)
11.1.6. Cold Working
11.14(2)
11.1.6.1. Metal Working
11.14(1)
11.1.6.2. Shot Peening
11.15(1)
11.2. Chemical Diffusion Treatments
11.16(36)
11.2.1. Austenitic Carburizing
11.17(9)
11.2.1.1. Pack Carburizing
11.20(1)
11.2.1.2. Liquid Carburizing
11.21(2)
11.2.1.3. Conventional Gas Carburizing
11.23(1)
11.2.1.4. Vacuum Carburizing
11.24(1)
11.2.1.5. Plasma Carburizing
11.24(2)
11.2.1.6. Properties of Carburized Steels
11.26(1)
11.2.2. Austenitic Carbonitriding
11.26(3)
11.2.2.1. Liquid Carbonitriding
11.27(1)
11.2.2.2. Gas Carbonitriding
11.28(1)
11.2.2.3. Properties of Carbonitrided Steels
11.28(1)
11.2.3. Ferritic Nitriding
11.29(3)
11.2.3.1. Pack Nitriding
11.30(1)
11.2.3.2. Conventional Gas Nitriding
11.30(1)
11.2.3.3. Plasma Nitriding
11.31(1)
11.2.3.4. Propereties of Nitrided Steels
11.32(1)
11.2.4. Ferritic Nitrocarburizing
11.32(4)
11.2.4.1. Liquid Nitrocarburizing
11.34(1)
11.2.4.2. Conventional Gas Nitrocarburizing
11.35(1)
11.2.4.3. Plasma Nitrocarburizing
11.36(1)
11.2.4.4. Properties of Nitrocarburized Steels
11.36(1)
11.2.5. Boriding
11.36(9)
11.2.5.1. Pack Boriding
11.39(1)
11.2.5.2. Liquid Boriding
11.40(1)
11.2.5.3. Gas Boriding
11.40(1)
11.2.5.4. Properties of Borided Metals
11.40(5)
11.2.6. Chromizing
11.45(4)
11.2.7. Aluminizing
11.49(1)
11.2.8. Siliconizing
11.50(1)
11.2.9. Sherardizing
11.51(1)
11.3. References
11.52
Chapter 12. Surface Treatments by Ion Beams
12.1
12.1. Ion Implantation
12.2(40)
12.1.1. Implantation Metallurgy
12.5(6)
12.1.1.1. Physical Configuration of Implanted Species
12.8(1)
12.1.1.2. Supersaturated Crystalline Solutions
12.8(1)
12.1.1.3. Metastable Crystalline Structures
12.8(1)
12.1.1.4. Amorphous Phases
12.9(1)
12.1.1.5. Equilibrium-Phase Alloys
12.10(1)
12.1.2. Advantages and Disadvantages of Ion Implantation
12.11(1)
12.1.3. Ion Implantation Equipment
12.12(4)
12.1.3.1. Ion Sources
12.14(1)
12.1.3.2. Ion Beam Extractor System
12.14(1)
12.1.3.3. Accelerators and Analyzing Systems
12.14(2)
12.1.3.4. Ion Beam Scanning
12.16(1)
12.1.4. Materials Treated by Ion Implantation
12.16(1)
12.1.5. Characteristics of Ion Implanted Materials
12.17(25)
12.1.5.1. Microhardness
12.17(4)
12.1.5.2. Fracture Toughness
12.21(3)
12.1.5.3. Flexural Strength
12.24(1)
12.1.5.4. Friction
12.25(2)
12.1.5.5. Wear
12.27(10)
12.1.5.6. Fatigue
12.37(3)
12.1.5.7. Corrosion
12.40(2)
12.2. Ion Beam Mixing
12.42(12)
12.2.1. Properties of Ion Beam Mixed Solid Lubricant and Hard Coatings on Metals
12.47(4)
12.2.2. Properties of Ion Beam Mixed Hard Coatings on Ceramics
12.51(3)
12.3. References
12.54
Chapter 13. Soft Coatings
13.1
13.1. Layered Lattice Solid Coatings
13.4(27)
13.1.1. Graphite
13.4(4)
13.1.1.1. Bonded Graphite Coatings
13.6(2)
13.1.1.2. Ion-Plated Grpahite Coatings
13.8(1)
13.1.2. Graphite Fluoride
13.8(3)
13.1.3. Molybdenum Disulfide
13.11(18)
13.1.3.1. Bonded MoS(2) Coatings
13.12(7)
13.1.3.2. Sputtered MoS(2) Coatings
13.19(10)
13.1.4. Other Layered Lattice Solid Coatings
13.29(2)
13.2. Nonlayered Lattice Solid Lubricant Coatings
13.31(19)
13.2.1. PbO-Based Coatings
13.32(4)
13.2.2. Fluoride-Based Coatings
13.36(14)
13.2.2.1. Ceramic-Bonded and Fusion-Bonded Coatings
13.37(3)
13.2.2.2. Fluoride-Metal Composites
13.40(1)
13.2.2.3. Fluoride-Metal Plasma Sprayed Composite Coatings
13.40(4)
13.2.2.4. Fluoride-Carbide Composite Plasma Sprayed Coatings
13.44(5)
13.2.2.5. Fluoride-Oxide Composite Plasma Sprayed Coatings
13.49(1)
13.3. Polymer Coatings
13.50(8)
13.3.1. Resin-Bonded Polymer Coatings
13.51(5)
13.3.2. Physical Vapor Deposited Polymer Coatings
13.56(1)
13.3.3. Plasma Polymerized Coatings
13.57(1)
13.4. Soft Metallic Coatings
13.58(12)
13.4.1. Electrochemically Deposited Soft Metals
13.59(3)
13.4.2. Ion-Plated Soft Metallic Coatings
13.62(7)
13.4.2.1. Coating Thickness Effects
13.63(1)
13.4.2.2. Substrate Surface Roughness Effects
13.64(1)
13.4.2.3. Effect of Sliding Speed
13.64(1)
13.4.2.4. Effect of Load
13.65(1)
13.4.2.5. Effect of Alloying Elements
13.68(1)
13.4.2.6. Effect of Interlayers
13.68(1)
13.4.3. Thermal-Sprayed and Weld Deposited Soft Metals
13.69(1)
13.5. References
13.70(9)
Appendix 13.A: Surface Pretreatments and Binder Materials for Bonded Coatings
13.79
13.A.1. Surface Pretreatments
13.79(1)
13.A.2. Binder Materials
13.80(1)
13.A.3. Organic Binder Materials
13.80(1)
13.A.4. Inorganic Binder Materials
13.81
Chapter 14. Hard Coatings
14.1
14.1. Ferrous-Based Alloy Coatings
14.5(1)
14.2. Nonferrous Metallic Coatings
14.5(16)
14.2.1. Chromium Coatings
14.5(9)
14.2.1.1. Cr Coatings Applied by Electrochemical Deposition
14.7(3)
14.2.1.2. Cr Coatings Applied by PVD
14.10(3)
14.2.1.3. Cr Coatings Applied by CVD
14.13(1)
14.2.1.4. Cr Composite Coatings Applied by Electrochemical Deposition
14.14(1)
14.2.2. Nickel Coatings
14.14(5)
14.2.2.1. Ni Coatings Applied by Electrochemical Deposition
14.14(1)
14.2.2.2. Ni Coatings Applied by Electroless Deposition
14.14(2)
14.2.2.3. Ni Coatings Applied by CVD
14.16(3)
14.2.2.4. Ni Composite Coatings Applied by Electroless Deposition
14.19(1)
14.2.3. Molybdenum Coatings
14.19(2)
14.3. Cobalt- and Nickel-Based Alloy Coatings
14.21(9)
14.3.1. Cobalt-Based Alloy Coatings
14.22(4)
14.3.2. Ni-Based Alloy Coatings
14.26(1)
14.3.3. Other Alloy Coatings
14.27(1)
14.3.4. Sliding Wear and Corrosion Resistance of Various Hard Alloy Coatings
14.28(2)
14.4. Ceramic Coatings
14.30(98)
14.4.1. Oxide Coatings
14.30(19)
14.4.1.1. Alumina and Alumina-Titania Coatings
14.32(9)
14.4.1.2. Chromia Coatings
14.41(4)
14.4.1.3. Zirconia Coatings
14.45(4)
14.4.1.4. Other Oxide Coatings
14.48(1)
14.4.1.5. Proprietary Oxide Coatings
14.49(1)
14.4.2. Carbide Coatings
14.49(26)
14.4.2.1. Titanium Carbide Coatings
14.50(14)
14.4.2.2. Tungsten Carbide Coatings
14.64(5)
14.4.2.3. Chromium Carbide Coatings
14.69(4)
14.4.2.4. Hafnium Carbide and Zirconium Carbide Coatings
14.73(1)
14.4.2.5. Silicon Carbide Coatings
14.73(1)
14.4.2.6. Other Carbide Coatings
14.74(1)
14.4.3. Nitride Coatings
14.75(24)
14.4.3.1. Titanium Nitride Coatings
14.75(11)
14.4.3.2. Hafnium Nitride and Zirconium Nitride Coatings
14.86(4)
14.4.3.3. Silicon Nitride Coatings
14.90(3)
14.4.3.4. Cubic Boron Nitride (CBN) Coatings
14.93(2)
14.4.3.5. Other Nitride Coatings
14.95(2)
14.4.3.6. Polynitride Coatings
14.97(2)
14.4.4. Boride Coatings
14.99(3)
14.4.5. Silicide Coatings
14.102(1)
14.4.6. Hard Carbon Coatings
14.103(25)
14.4.6.1. Amorphous Carbon Coatings
14.106(18)
14.4.6.2. Diamond Coatings
14.124(4)
14.5. References
14.128
Chapter 15. Screening Methodology for Materials, Coatings, and Surface Treatments
15.1
15.1. Physical Examinations
15.1(57)
15.1.1. Techniques for Coating-Thickness Measurements
15.2(15)
15.1.1.1. Optical Techniques
15.2(4)
15.1.1.2. Mechanical Techniques
15.6(2)
15.1.1.3. Electrical Techniques
15.8(3)
15.1.1.4. Magnetic/Electromagnetic Techniques
15.11(1)
15.1.1.5. Radiation Techniques
15.12(3)
15.1.1.6. Miscellaneous Techniques
15.15(4)
15.1.2. Techniques for Coating-Density Measurements
15.17(1)
15.1.2.1. Measurement of Coating Mass and Thickness
15.17(1)
15.1.2.2. Sink or Float Technique
15.17(2)
15.1.3. Techniques for Coating Porosity Measurements
15.19(5)
15.1.3.1. Direct Observation
15.20(1)
15.1.3.2. Indirect Detection
15.21(3)
15.1.4. Techniques for Electrical-Resistivity Measurements
15.24(2)
15.1.4.1. Two-Point Probe Technique
15.24(1)
15.1.4.2. Four-Point Probe Technique
15.25(1)
15.1.5. Techniques for Surface-Roughness Measurements
15.26(3)
15.1.5.1. Stylus Instrument
15.28(1)
15.1.5.2. Noncontact Digital Optical Profiler (DOP)
15.29(1)
15.1.6. Techniques for Hardness Measurements
15.29(10)
15.1.6.1. Static Indentation Hardness Test
15.31(5)
15.1.6.2. Rebound or Dynamic Hardness Tests
15.36(1)
15.1.6.3. Scratch Hardness Tests
15.37(1)
15.1.6.4. Static Indentation Hardness Tests on Polymers
15.38(1)
15.1.7. Techniques for Measuring Residual Stresses
15.39(6)
15.1.7.1. Deformation Methods
15.40(3)
15.1.7.2. X-Ray, Electron-, and Neutron-Diffraction Methods
15.43(2)
15.1.7.3. Miscellaneous Methods
15.45(1)
15.1.8. Techniques for Adhesion Measurements
15.45(13)
15.1.8.1. Nucleation Methods
15.46(1)
15.1.8.2. Mechanical Methods
15.47(9)
15.1.8.3. Miscellaneous Methods
15.56(2)
15.2. Friction and Wear Tests
15.58(11)
15.2.1. Design Methodology
15.59(3)
15.2.1.1. Simulation
15.59(1)
15.2.1.2. Acceleration
15.60(1)
15.2.1.3. Specimen Preparation
15.60(1)
15.2.1.4. Friction and Wear Measurements
15.60(2)
15.2.2. Typical Test Geometries
15.62(7)
15.2.2.1. Sliding Friction and Wear Tests
15.62(2)
15.2.2.2. Abrasion Tests
15.64(2)
15.2.2.3. Rolling-Contact Fatigue Tests
15.66(1)
15.2.2.4. Solid-Particle Erosion Test
15.66(1)
15.2.2.5. Corrosion Tests
15.66(3)
15.3. References
15.69
Chapter 16. Tribological Applications of Materials, Coatings, and Surface Treatments
16.1
16.1. Sliding-Contact Bearings
16.1(3)
16.2. Rolling-Contact Bearings
16.4(3)
16.2.1. Bearings and Races
16.5(2)
16.2.2. Retainers or Cages
16.7(1)
16.3. Seals
16.7(2)
16.4. Gears
16.9(1)
16.5. Cams and Tappets
16.10(4)
16.6. Piston Rings
16.14(3)
16.6.1. Lubricated Piston Rings
16.15(2)
16.6.2. Unlubricated Piston Rings
16.17(1)
16.7. Electrical Brushes
16.17(2)
16.8. Cutting Tools
16.19(4)
16.8.1. Bulk Tool Materials
16.21(1)
16.8.2. Coatings
16.22(1)
16.9. Forming Tools
16.23(2)
16.10. Gas Turbine Engine
16.25(8)
16.10.1. Coating Protection Mechanisms
16.28(1)
16.10.2. Types of Coatings Used
16.28(5)
16.10.2.1. Diffusion Coatings
16.28(1)
16.10.2.2. MCrAlY Overlay Coatings
16.29(1)
16.10.2.3. Thermal-Barrier Coatings
16.29(3)
16.10.2.4. Coatings for Erosion Resistance
16.32(1)
16.11. Fusion Reactors
16.33(2)
16.12. Magnetic Storage Devices
16.35(4)
16.12.1. Tape Drives
16.35(2)
16.12.2. Floppy-Disk Drives
16.37(1)
16.12.3. Rigid-Disk Drives
16.37(2)
16.13. References
16.39
Author Index A.1 (follo
Subject Index S.1 (follo

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program