did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780070411524

Hydraulic Design Handbook

by
  • ISBN13:

    9780070411524

  • ISBN10:

    0070411522

  • Edition: 1st
  • Format: Hardcover
  • Copyright: 1999-07-29
  • Publisher: McGraw-Hill Professional
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $131.00

Summary

* Easy-to-follow guide to data otherwise offered in several difficult federal handbooks * Includes all relevant regulations from the EPA, NOAA, Federal Highway Administration, and other public agencies * Covers hydraulic design for water supply, water excess management, and environmental considerations * Features the contributions of experts in specific hydraulic design areas

Table of Contents

Contributors xxv(2)
Preface xxvii(2)
Acknowledgments xxix
CHAPTER 1 INTRODUCTION
1.1 OVERVIEW
1.1(1)
1.2 ANCIENT HYDRAULIC STRUCTURES
1.1(22)
1.2.1 A Time Perspective
1.1(3)
1.2.2 Irrigation Systems
1.4(1)
1.2.2.1 Egypt and Mesopotamia
1.4(4)
1.2.2.2 Prehistoric Mexico
1.8(2)
1.2.2.3 North America
1.10(3)
1.2.3 Dams
1.13(1)
1.2.4 Urban Water Supply and Drainage Systems
1.14(9)
1.3 DEVELOPMENT OF HYDRAULICS
1.23(1)
1.4 FEDERAL POLICIES AFFECTING HYDRAULIC DESIGN
1.23(1)
1.5 CONVENTIONAL PROCESS OF HYDRAULIC DESIGN
1.23(2)
1.6 ROLE OF ECONOMICS IN HYDRAULIC DESIGN
1.25(5)
1.6.1 Engineering Economic Analysis
1.25(2)
1.6.2 Benefit-Cost Analysis
1.27(1)
1.6.3 Estimated Life Spans of Hydraulic Structures
1.28(2)
1.7 ROLE OF OPTIMIZATION IN HYDRAULIC DESIGN
1.30(1)
1.8 ROLE OF RISK ANALYSIS IN HYDRAULIC DESIGN
1.31(3)
1.8.1 Existence of Uncertainties
1.31(1)
1.8.2 Risk-Reliability Evaluation
1.32(1)
1.8.2.1 Load resistance
1.32(1)
1.8.2.2 Composite risk
1.33(1)
1.8.2.3 Safety factor
1.33(1)
1.8.2.4 Risk assessment
1.33(1)
1.8.2.5 A model for risk-based design
1.33(1)
REFERENCES
1.34(3)
APPENDIX
1.37
CHAPTER 2 HYDRAULICS OF PRESSURIZED FLOW
2.1 INTRODUCTION
2.1(1)
2.2 IMPORTANCE OF PIPELINE SYSTEMS
2.2(1)
2.3 NUMERICAL MODELS: BASIS FOR PIPELINE ANALYSIS
2.2(2)
2.4 MODELING APPROACH
2.4(6)
2.4.1 Properties of Matter (What?)
2.5(1)
2.4.2 Laws of Conservation (How?)
2.6(1)
2.4.3 Conservation of Mass
2.7(1)
2.4.3.1 Law of conservation of chemical species
2.7(1)
2.4.3.2 Steady flow
2.8(1)
2.4.4 Newton's Second Law
2.8(2)
2.5 SYSTEM CAPACITY: PROBLEMS IN TIME AND SPACE
2.10(3)
2.6 STEADY FLOW
2.13(18)
2.6.1 Turbulent Flow
2.15(1)
2.6.2 Head Loss Caused by Friction
2.16(3)
2.6.3 Comparison of Loss Relations
2.19(2)
2.6.4 Local Losses
2.21(1)
2.6.5 Tractive Force
2.22(2)
2.6.6 Conveyance System Calculations: Steady Uniform Flow
2.24(3)
2.6.7 Pumps: Adding Energy to the Flow
2.27(1)
2.6.8 Sample Application Including Pumps
2.28(2)
2.6.9 Networks--Linking Demand and Supply
2.30(1)
2.7 QUASI-STEADY FLOW: SYSTEM OPERATION
2.31(1)
2.8 UNSTEADY FLOW--INTRODUCTION OF FLUID TRANSIENTS
2.32(11)
2.8.1 Importance of Water Hammer
2.33(1)
2.8.2 Cause of Transients
2.34(1)
2.8.3 Physical Nature of Transient Flow
2.35(1)
2.8.3.1 Implication 1. Water has a high density
2.35(1)
2.8.3.2 Implication 2. Water is only slightly compressible
2.36(1)
2.8.3.3 Implication 3. Local action and control
2.36(1)
2.8.4 Equation of State-Wavespeed Relations
2.37(2)
2.8.5 Increment of Head-Change Relation
2.39(1)
2.8.6 Transient Conditions in Valves
2.40(1)
2.8.6.1 Gate discharge equation
2.40(1)
2.8.6.2 Alternate valve representation
2.41(1)
2.8.6.3 Pressure regulating Valves.
2.42(1)
2.8.7 Conclusion
2.42(1)
REFERENCES
2.43
CHAPTER 3 HYDRAULICS OF OPEN-CHANNEL FLOW
3.1 INTRODUCTION
3.1(3)
3.2 ENERGY PRINCIPLE
3.4(4)
3.2.1 Definition of Specific Energy
3.4(1)
3.2.2 Critical Depth
3.5(1)
3.2.3 Variation of Depth With Distance
3.6(2)
3.2.4 Channels of Compound Section
3.8(1)
3.3 MOMENTUM
3.8(3)
3.3.1 Definition of Specific Momentum
3.8(1)
3.3.2 Hydraulic Jumps In Rectangular Channels
3.9(1)
3.3.3 Hydraulic Jumps In Nonrectangular Channels
3.10(1)
3.4 UNIFORM FLOW
3.11(5)
3.4.1 Manning's and Chezy Equations
3.11(1)
3.4.2 Estimation of the Manning Resistance Coefficient
3.11(2)
3.4.3 Equivalent Roughness Parameter k
3.13(1)
3.4.4 Resistance in Compound Channels
3.14(1)
3.4.5 Manning's Equation Solution
3.15(1)
3.4.6 Special Cases of Uniform Flow
3.15(1)
3.4.6.1 Normal and critical slopes
3.15(1)
3.4.6.2 Sheetflow
3.16(1)
3.4.6.3 Superelevation
3.16(1)
3.5 GRADUALLY AND SPATIALLY VARIED FLOW
3.16(8)
3.5.1 Introduction
3.16(1)
3.5.2 Gradually Varied Flow with S(f) = 0
3.17(2)
3.5.3 Gradually Varied Flow with S(f) is not equal to 0
3.19(5)
3.6 GRADUALLY AND RAPIDLY VARIED UNSTEADY FLOW
3.24(4)
3.6.1 Gradually Varied Unsteady Flow
3.24(2)
3.6.2 Rapidly Varied Unsteady Flow
3.26(2)
3.7 CONCLUSION
3.28(2)
REFERENCES
3.30(3)
APPENDIX
3.33
CHAPTER 4 SUBSURFACE FLOW AND TRANSPORT
4.1 INTRODUCTION
4.1(1)
4.2 CONSTITUTIVE RELATIONSHIPS
4.1(7)
4.2.1 Darcy's law
4.1(2)
4.2.2 Unsaturated Flow-Constitutive Relationship
4.3(1)
4.2.3 Difussive an, Dispersive fluxes
4.4(1)
4.2.3.1 Molecular diffusion
4.4(1)
4.2.3.2 Molecular diffusion in porous media
4.5(1)
4.2.3.3 Mechanical dispersion and macro-dispersion
4.5(1)
4.2.4 Partitioning
4.6(1)
4.2.5 Degradation
4.7(1)
4.3 FLOW AND TRANSPORT IN SATURATED ZONE
4.8(7)
4.3.1 Flow to a Single Well
4.8(1)
4.3.2 Superposition and Convolution
4.9(1)
4.3.3 Interception Wells
4.10(1)
4.3.4 Partially Penetrating Wells
4.10(2)
4.3.5 Well Duplets
4.12(1)
4.3.6 Transport Equations
4.12(1)
4.3.7 Selected Analytical Solutions
4.13(1)
4.3.7.1 One-dimensional transport with step change in concentration-no degradation
4.13(1)
4.3.7.2 One-dimensional transport with step change in concentration and first-order degradation
4.13(1)
4.3.7.3 Continuous point injection, 2-D dispersive transport, and no retardation, no degradation
4.13(1)
4.3.7.4 Point slug injection into a uniform flow field--3-D transport and retardation.
4.14(1)
4.3.7.5 Continuous injection from a finite-sized source with retardation and degradation.
4.14(1)
4.4 FLOW AND TRANSPORT IN UNSATURATED ZONE--AQUEOUS PHASE
4.15(2)
4.4.1 Flow in an Unsturated Zone
4.15(1)
4.4.2 Transport in an Unsaturated Zone
4.16(1)
4.5 FLOW AND TRANSPORT IN VAPOR PHASE
4.17(5)
4.5.1 Soil Vapor Flow
4.17(2)
4.5.2 Transport in Vapor Phase
4.19(3)
REFERENCES
4.22
CHAPTER 5 ENVIRONMENTAL HYDRAULICS
5.1 INTRODUCTION
5.1(1)
5.2 WATER AND THERMAL BUDGETS
5.1(6)
5.2.1 Water Budget
5.1(2)
5.2.2 Thermal Budget
5.3(1)
5.2.2.1 Net atmospheric shortwave radiation (Q(s) - Q(sr))
5.3(1)
5.2.2.2 Net atmospheric long wave radiation (Q(a) - Q(ar))
5.4(1)
5.2.2.3 Long wave back radiation (Q(br))
5.4(2)
5.2.2.4 Evaporative heat flux (Q(e))
5.6(1)
5.2.2.5 Convective heat flux (Q(c))
5.7(1)
5.2.2.6 Conclusion
5.7(1)
5.3 EFFECTS AND CAUSES OF STRATIFICATION
5.7(2)
5.3.1 Effects
5.7(1)
5.3.2 Water Density as a Function of Temperature
5.8(1)
5.3.3 Water Density as a Function of Dissolved Solids or Salinity and Suspended Solids
5.8(1)
5.4 MIXING AND DISPERSION IN OPEN CHANNELS
5.9(3)
5.4.1 Vertical Turbulent Diffusion
5.9(1)
5.4.2 Transverse Turbulent Diffusion
5.10(1)
5.4.3 Longitudinal Dispersion
5.11(1)
5.5 MIXING DISPERSION IN LAKES AND RESERVOIRS
5.12(16)
5.5.1 Annual Stratification Cycle
5.14(1)
5.5.2 Plunge Point and Separation Point End of the Transition Between Riverine and Lacustrine Conditions
5.15(2)
5.5.3 Speed, Thickness, and Width of Overflows
5.17(1)
5.5.4 Underflow or Density Current Mixing
5.17(1)
5.5.5 Interflow Mixing
5.18(4)
5.5.6 Outflow Mixing
5.22(4)
5.5.7 Mixing Due to Meteorological Forces
5.26(2)
5.6 PLUME AND JET HYDRAULICS
5.28(3)
5.6.1 Simple Jets
5.29(1)
5.6.2 Simple Plumes
5.29(2)
REFERENCES
5.31
CHAPTER 6 SEDIMENTATION AND EROSION HYDRAULICS
6.1 INTRODUCTION
6.1(1)
6.2 HYDRAULICS FOR SEDIMENT TRANSPORT
6.2(4)
6.2.1 Flow Velocity Distribution
6.2(2)
6.2.2 Relations for Channel Resistance
6.4(1)
6.2.3 Fixed-Bed and Movable-Bed Roughness
6.5(1)
6.3 SEDIMENT PROPERTIES
6.6(10)
6.3.1 Rock Types
6.6(1)
6.3.2 Specific Gravity
6.7(1)
6.3.3 Size
6.7(1)
6.3.4 Size Distribution
6.8(3)
6.3.5 Porosity
6.11(1)
6.3.6 Shape
6.12(1)
6.3.7 Fall Velocity
6.12(1)
6.3.8 Relation Between Size Distribution and Stream Morphology
6.12(4)
6.4 THRESHOLD CONDITION FOR SEDIMENT MOVEMENT
6.16(6)
6.4.1 Granular Sediment on a Stream Bed
6.17(3)
6.4.2 Granular Sediment on Bank
6.20(1)
6.4.3 Granular Sediment on Sloping Bed
6.20(1)
6.4.4 Sediment Mixtures
6.21(1)
6.5 SEDIMENT TRANSPORT
6.22(4)
6.5.1 Sediment Transport Modes
6.22(2)
6.5.2 Shields Regime Diagram
6.24(2)
6.6 BEDLOAD TRANSPORT
6.26(8)
6.6.1 The Bedload Transport Function
6.26(1)
6.6.2 Erosion Into, and Deposition From, Suspension
6.26(1)
6.6.3 The Exner Equation of Sediment Mass Conservation for Uniform Material
6.27(1)
6.6.4 Bedload Transport Relations
6.27(2)
6.6.5 Bedload Transport Relation for Mixtures
6.29(5)
6.7 BEDFORMS
6.34(13)
6.7.1. Dunes, Antidunes, Ripples, and Bars
6.34(1)
6.7.1.1 Dunes
6.34(2)
6.7.1.2 Antidunes
6.36(1)
6.7.1.3 Ripples
6.36(1)
6.7.1.4 Bars
6.36(1)
6.7.1.5 Progression of bedforms
6.37(2)
6.7.2 Dimensionless Characterization of Bedform Regime
6.39(7)
6.7.3 Effect of Bedforms on River Stage
6.46(1)
6.8 EFFECT OF BEDFORMS ON FLOW AND SEDIMENT TRANSPORT
6.47(8)
6.8.1 Form Drag and Skin Friction
6.47(1)
6.8.2 Shear Stress Partitions
6.47(2)
6.8.2.1 The Einstein partition
6.49(1)
6.8.2.2 Example of Einstein partition
6.49(1)
6.8.2.3 The Nelson-Smith partition
6.49(1)
6.8.2.4 Example of the Nelson-Smith partition
6.50(1)
6.8.3 Empirical Formulas for Stage-discharge Relations
6.51(1)
6.8.3.1 Einstein-Barbarossa Method
6.51(1)
6.8.3.2 Application of the Einstein-Barbarossa Method
6.51(1)
6.8.3.3 Engelund-Hansen Method
6.52(1)
6.8.3.4 Application of the Engelund-Hansen Method
6.53(1)
6.8.3.5 Brownlie Method
6.53(2)
6.9 SUSPENDED LOAD
6.55(19)
6.9.1 Mass Conservation of Suspended Sediment
6.55(1)
6.9.2 Boundary Conditions
6.55(2)
6.9.3 Equilibrium Suspension in a Wide Rectangular Channel
6.57(1)
6.9.4 Eddy Diffusivity
6.57(2)
6.9.5 Rousean Distribution of Suspended Sediment
6.59(1)
6.9.6 Vertically-Averaged Concentrations: Suspended Load
6.60(3)
6.9.7 Relation for Sediment Entrainment
6.63(3)
6.9.8 Entrainment Relation for Sediment Mixtures
6.66(2)
6.9.9 Example of Computation of Sediment Load and Rating Curve
6.68(1)
6.9.9.1 Depth-discharge calculations
6.69(2)
6.9.9.2 Bedload discharge calculations
6.71(1)
6.9.9.3 Sediment load discharge calculations
6.71(2)
6.9.9.4 Determination of bankfull flow discharge (Q(bf))
6.73(1)
6.10 DIMENSIONLESS RELATIONS FOR TOTAL BED MATERIAL LOAD IN SAND-BED STREAMS
6.74(15)
6.10.1 Form of the Relations
6.74(3)
6.10.2 Engelund-Hansen Relations
6.77(1)
6.10.2.1 Sediment transport
6.77(1)
6.10.2.2 Hydraulic resistance
6.77(1)
6.10.3 Brownlie Relations
6.78(1)
6.10.3.1 Sediment transport
6.78(1)
6.10.3.2 Hydraulic resistance
6.78(1)
6.10.3.3 Computational procedure for normal flow
6.79(1)
6.10.3.4 Computational procedure for gradually varied flow
6.79(1)
6.10.4 The Ackers-White relation
6.79(1)
6.10.5 Yang relation
6.80(1)
6.10.6 Comparison of the Relations Against Data
6.80(9)
6.11 HYDRAULICS OF RESERVOIR SEDIMENTATION
6.89(8)
6.11.1 Introduction
6.89(1)
6.11.2 Theoretical Considerations
6.89(2)
6.11.3 Computation of Normal Flow Conditions
6.91(1)
6.11.4 Governing Equations
6.92(1)
6.11.5 Discussion of Method
6.93(1)
6.11.6 Results
6.94(3)
6.12 HYDRAULICS OF TURBIDITY CURRENTS
6.97(10)
6.12.1 Introduction
6.97(1)
6.12.2 Governing Equations
6.98(2)
6.12.3 Plunging Flow
6.100(4)
6.12.4 Internal Hydraulic Jump
6.104(1)
6.12.5 Application: Turbidity Current in Lake Superior
6.105(2)
REFERENCES
6.107
CHAPTER 7 RISK/RELIABILITY-BASED HYDRAULICS ENGINEERING DEGIN
7.1 INTRODUCTION
7.1(3)
7.1.1 Uncertainties in Hydraulic Engineering Design
7.1(1)
7.1.2 Reliability of Hydraulic Engineering Systems
7.2(2)
7.2 TECHNIQUES FOR UNCERTAINTY ANALYSIS
7.4(15)
7.2.1 Analytical Technique: Fourier and Exponential Transforms
7.4(2)
7.2.2 Analytical Technique: Mellin Transform
7.6(3)
7.2.3 Approximate Technique: First-Order Variance Estimation (FOVE) Method
7.9(3)
7.2.4 Approximate Technique: Rosenblueth's Probabilistic Point Estimation (PE) Method
7.12(4)
7.2.5 Approximate Technique: Harr's Probabilistic Point Estimation (PE) Method
7.16(3)
7.3 RELIABILITY ANALYSIS METHODS
7.19(25)
7.3.1 Performance Functions and Reliability Index
7.20(1)
7.3.2 Direct Integration Method
7.21(4)
7.3.3 Mean-Value First-Order Second-Moment (MFOSM) Method
7.25(1)
7.3.4 Advanced First-Order Second-Moment (AFOSM) Method
7.25(2)
7.3.4.1 First-order approximation of performance function at design point.
7.27(1)
7.3.4.2 Algorithms of AFOSM for independent normal parameters.
7.28(3)
7.3.4.3 Treatment of correlated normal random variables.
7.31(3)
7.3.4.4 Treatment of non-normal random variables.
7.34(3)
7.3.4.5 AFOSM reliability analysis for non-normal, correlated random variables.
7.37(1)
7.3.5 Monte Carlo Simulation Methods
7.38(6)
7.4 RISK-BASED DESIGN OF HYDRAULIC STRUCTURES
7.44(10)
7.4.1 Basic Concept
7.44(1)
7.4.2 Historical Development of Hydraulic Design Methods
7.45(1)
7.4.2.1 Return-period design.
7.46(1)
7.4.2.2 Conventional risk-based design.
7.46(1)
7.4.2.3 Risk-based design considering other uncertainties.
7.46(1)
7.4.3 Tangible Costs in Risk-Based Design of Hydraulic Structures
7.46(1)
7.4.4 Evaluations of Annual Expected Flood Damage Cost
7.47(1)
7.4.4.1 Conventional approach.
7.47(2)
7.4.4.2 Incorporation of hydraulic uncertainty.
7.49(1)
7.4.4.3 Extension of conventional approach by considering hydrologic parameter uncertainty
7.49(1)
7.4.4.4 Incorporation of hydrologic inherent/parameter and hydraulic uncertainties.
7.50(1)
7.4.5 U.S. Army Corps of Engineers Risk-Based Analysis for Flood-Damage Reduction Structures
7.51(3)
REFERENCES
7.54
CHAPTER 8 HYDRAULICS DESIGN FOR ENERGY GENERATION
8.1 INTRODUCTION
8.1(1)
8.2 HEADRACE CHANNEL
8.1(3)
8.3 INTAKES
8.4(10)
8.4 TUNNELS
8.14(3)
8.5 SURGE TANKS
8.17(4)
8.6 PENSTOCK
8.21(5)
8.6.1 Penstock Branches
8.24(2)
8.7 DRAFT-TUBE EXITS
8.26(2)
8.8 TAIL-TUNNELS
8.28(1)
8.8.1 Tail-Tunnel Surge Tank
8.28(1)
8.8.2 Tail-Tunnel Outlet Structure
8.29(1)
8.9 TAILRACE CHANNELS
8.29(3)
REFERENCES
8.32
CHAPTER 9 HYDRAULICS OF WATER DISTRIBUTION SYSTEMS
9.1 INTRODUCTION
9.1(4)
9.1.1 Configuration and Components of Water Distribution Systems
9.1(2)
9.1.2 Conservation Equations for Pipe Systems
9.3(1)
9.1.3 Network Components
9.3(2)
9.2 STEADY-STATE HYDRAULIC ANALYSIS
9.5(18)
9.2.1 Series and Parallel Pipe Systems
9.5(2)
9.2.2 Branching Pipe Systems
9.7(4)
9.2.3 Pipe Networks
9.11(1)
9.2.3.1 Hardy Cross method
9.11(6)
9.2.3.2 Linear theory method
9.17(1)
9.2.3.3 Newton-Raphson method and the node equations.
9.18(2)
9.2.3.4 Gradient algorithm
9.20(2)
9.2.3.5 Comparison of solution methods
9.22(1)
9.2.3.6 Extended-period simulation
9.22(1)
9.3 UNSTEADY FLOW IN PIPE NETWORK ANALYSIS
9.23(3)
9.3.1 Governing Equations
9.24(1)
9.3.2 Solution Methods
9.25(1)
9.3.2.1 Loop formulation.
9.25(1)
9.3.2.2 Pipe formulation with the gradient algorithm.
9.25(1)
9.4 WATER-QUALITY MODELING
9.26(5)
9.4.1 Steady-State Modeling
9.27(1)
9.4.2 Dynamic Analysis
9.27(1)
9.4.2.1 Governing equations.
9.27(1)
9.4.2.2 Solution methods
9.28(3)
9.5 COMPUTER MODELING OF WATER DISTRIBUTION SYSTEMS
9.31(6)
9.5.1 Applications of Models
9.32(1)
9.5.2 Model Calibration
9.32(5)
9.5.3 Model Results
9.37(1)
REFERENCES
9.37
CHAPTER 10 PUMP SYSTEM HYDRAULIC DESIGN
10.1 PUMP TYPES AND DEFINITIONS
10.1(8)
10.1.1 Pump Standards
10.1(1)
10.1.2 Pump Definitions and Terminology
10.2(4)
10.1.3 Types of Centrifugal Pumps
10.6(3)
10.2 PUMP HYDRAULICS
10.9(7)
10.2.1 Pump Performance Curves
10.9(1)
10.2.2 Pipeline Hydraulics and System Curves
10.9(1)
10.2.2.1 Hazen-Williams equation
10.9(2)
10.2.2.2 Manning's equation
10.11(1)
10.2.2.3 Darcy-Weisbach equation
10.12(1)
10.2.2.4 Comparisons of f, C, and n.
10.12(1)
10.2.3 Hydraulics of Valves
10.13(1)
10.2.4 Determination of Pump Operating Points--Single Pump
10.13(1)
10.2.5 Pumps Operating in Parallel
10.14(1)
10.2.6 Variable-Speed Pumps
10.14(2)
10.3 CONCEPT OF SPECIFIC SPEED
10.16(4)
10.3.1 Introduction: Discharge-Specific Speed
10.16(3)
10.3.2 Suction-Specific Speed
10.19(1)
10.4 NET POSITIVE SUCTION HEAD
10.20(4)
10.4.1 Net Positive Suction Head Available
10.20(1)
10.4.2 Net Positive Suction Head Required by a Pump
10.21(1)
10.4.3 NPSH Margin or Safety Factor Considerations
10.22(1)
10.4.4 Cavitation
10.23(1)
10.5 CORRECTED PUMP CURVES
10.24(4)
10.6 HYDRAULIC CONSIDERATIONS IN PUMP SELECTION
10.28(4)
10.6.1 Flow Range of Centrifugal Pumps
10.28(1)
10.6.2 Causes and Effects of Centrifugal Pumps Operating Outside Allowable Flow Ranges
10.29(1)
10.6.3 Summary of Pump Selection
10.30(2)
10.7 APPLICATION OF PUMP HYDRAULIC ANALYSIS TO DESIGN OF PUMPING STATION COMPONENTS
10.32(5)
10.7.1 Pump Hydraulic Selections and Specifications
10.32(1)
10.7.1.1 Pump operating ranges
10.32(2)
10.7.1.2 Specific pump hydraulic operating problems.
10.34(1)
10.7.2 Piping
10.34(1)
10.7.2.1 Pump suction and discharge piping installation guidelines.
10.34(1)
10.7.2.2 Fluid velocity
10.34(1)
10.7.2.3 Design of pipe wall thickness (pressure design)
10.35(1)
10.7.2.4 Design of pipe wall thickness (vacuum conditions).
10.36(1)
10.7.2.5 Summary of pipe design criteria.
10.36(1)
10.8 Implications of Hydraulic Transients in Pumping Station Design
10.37(1)
10.8.1 Effect of Surge on Valve Selection
10.37(1)
10.8.2 Effect of Surge on Pipe Material Selection
10.37(1)
REFERENCES
10.38(1)
APPENDIX
10.39
CHAPTER 11 WATER DISTRIBUTION SYSTEM DESIGN
11.1 INTRODUCTION
11.1(1)
11.1.1 Overview
11.1(1)
11.1.2 Definitions
11.1(1)
11.2 DISTRIBUTION SYSTEM PLANNING
11.2(10)
11.2.1 Water Demands
11.2(2)
11.2.2 Planning and Design Criteria
11.4(3)
11.2.2.1 Supply
11.7(1)
11.2.2.2 Storage.
11.7(1)
11.2.2.3 Fire demands.
11.7(1)
11.2.2.4 Distribution system analysis
11.7(1)
11.2.2.5 Service pressures.
11.8(1)
11.2.3 Peaking Coefficients
11.8(1)
11.2.4 Computer Models and System Modeling
11.9(1)
11.2.4.1 History of computer models.
11.9(1)
11.2.4.2 Software packages
11.10(1)
11.2.4.3 Development of a system model.
11.10(2)
11.3 PIPELINE PRELIMINARY DESIGN
11.12(1)
11.3.1 Alignment
11.12(1)
11.3.2 Subsurface Conflicts
11.12(1)
11.3.3 Rights-of-Way
11.13(1)
11.4 PIPING MATERIALS
11.13(21)
11.4.1 Ductile Iron Pipe (DIP)
11.13(1)
11.4.1.1 Materials
11.14(1)
11.4.1.2 Available sizes and thicknesses.
11.14(1)
11.4.1.3 Joints.
11.14(1)
11.4.1.4 Gaskets
11.14(1)
11.4.1.5 Fittings.
11.15(1)
11.4.1.6 Linings.
11.15(1)
11.4.1.7 Coatings.
11.16(2)
11.4.2 Polyvinyl Chloride (PVC) Pipe
11.18(1)
11.4.2.1 Materials.
11.18(1)
11.4.2.2 Available sizes and thicknesses.
11.19(1)
11.4.2.3 Joints
11.20(1)
11.4.2.4 Gaskets
11.20(1)
11.4.2.5 Fittings
11.20(1)
11.4.2.6 Linings and Coatings
11.20(1)
11.4.3 Steel Pipe
11.20(1)
11.4.3.1 Materials
11.21(1)
11.4.3.2 Available sizes and thicknesses
11.21(1)
11.4.3.3 Joints
11.22(1)
11.4.3.4 Gaskets
11.23(1)
11.4.3.5 Fittings
11.23(2)
11.4.3.6 Linings and coatings
11.25(1)
11.4.4 Reinforced Concrete Pressure Pipe (RCPP)
11.25(1)
11.4.4.1 Steel cylinder pipe, AWWA C300
11.25(1)
11.4.4.2 Prestressed steel cylinder pipe, AWWA C301
11.26(1)
11.4.4.3 Noncylinder pipe, AWWA C302
11.27(1)
11.4.4.4 Pretensioned steel cylinder, AWWA C303
11.28(1)
11.4.5 High-Density Polyethylene (HDPE) Pipe
11.29(1)
11.4.5.1 Materials
11.29(1)
11.4.5.2 Available sizes and thicknesses
11.30(1)
11.4.5.3 Joints
11.30(1)
11.4.5.4 Gaskets
11.31(1)
11.4.5.5 Fittings
11.31(1)
11.4.5.6 Linings and coatings
11.31(1)
11.4.6 Asbestos-Cement Pipe (ACP)
11.31(1)
11.4.6.1 Available sizes and thicknesses
11.31(1)
11.4.6.2 Joints and fittings
11.31(1)
11.4.7 Pipe Material Selection
11.32(2)
11.5 PIPELINE DESIGN
11.34(10)
11.5.1 Internal Pressures
11.34(1)
11.5.2 Loads on Buried Pipe
11.34(1)
11.5.2.1 Earth loads
11.35(1)
11.5.2.2 Rigid pipe
11.36(1)
11.5.2.3 Flexible pipe
11.37(1)
11.5.3 Thrust Restraint
11.38(1)
11.5.3.1 Thrust blocks
11.39(1)
11.5.3.2 Restrained joints
11.40(4)
11.6 DISTRIBUTION AND TRANSMISSION SYSTEM VALUES
11.44(4)
11.6 Isolation Valves
11.44(1)
11.6.1.1 Gate valves
11.44(1)
11.6.1.2 Butterfly valves
11.45(1)
11.6.2 Control Valves
11.46(1)
11.6.2.1 Pressure reducing valve
11.46(1)
11.6.2.2 Pressure sustaining valves
11.46(1)
11.6.2.3 Flow control valves
11.47(1)
11.6.2.4 Altitude valves
11.47(1)
11.6.2.5 Pressure relief valves
11.47(1)
11.6.3 Blow-offs
11.47(1)
11.6.4 Air Release and Vacuum Relief Valves
11.47(1)
REFERENCES
11.48
CHAPTER 12 HYDRAULIC TRANSIENT DESIGN FOR PIPELINE SYSTEMS
12.1 INTRODUCTION TO WATERHAMMER AND SURGING
12.1(1)
12.2 FUNDAMENTALS OF WATERHAMMER AND SURGE
12.2(1)
12.2.1 Definitions
12.2(1)
12.2.2 Acoustic Velocity
12.2(1)
12.2.3 Joukowsky (Waterhammer) Equation
12.2(1)
12.3 HYDRAULIC CHARACTERISTICS OF VALVES
12.3(6)
12.3.1 Descriptions of Various Types of Valves
12.4(1)
12.3.2 Definition of Geometric Characteristics of Valves
12.5(1)
12.3.3 Definition of Hydraulic Performance of Valves
12.6(1)
12.3.4 Typical Geometric and Hydraulic Valve Characteristics
12.7(1)
12.3.5 Valve Operation
12.7(2)
12.4 HYDRAULIC CHARACTERISTICS OF PUMPS
12.9(8)
12.4.1 Definition of Pump Characteristics
12.9(1)
12.4.2 Homologous (Affinity) Laws
12.10(1)
12.4.3 Abnormal Pump (Four-Quadrant) Characteristics
12.11(3)
12.4.4 Representation of Pump Data for Numerical Analysis
12.14(2)
12.4.5 Critical Data Required for Hydraulic Analysis of Systems with Pumps
12.16(1)
12.5 SURGE PROTECTION AND SURGE CONTROL DEVICES
12.17(7)
12.5.1 Critical Parameters for Transients
12.19(1)
12.5.2 Critique of Surge Protection
12.19(2)
12.5.3 Surge Protection Control and Devices
12.21(3)
12.6 DESIGN CONSIDERATIONS
12.24(1)
12.7 NEGATIVE PRESSURES AND WATER COLUMN SEPARATION IN NETWORKS
12.25(1)
12.8 TIME CONSTANTS FOR HYDRAULIC SYSTEMS
12.26(1)
12.9 CASE STUDIES
12.26(4)
12.9.1 Case Study with One-way and Simple Surge Tanks
12.27(3)
12.9.2 Case Study with Air chamber
12.30(1)
12.9.3 Case Study with Air-vacuum Breaker
12.30(1)
REFERENCES
12.30
CHAPTER 13 HYDRAULIC DESIGN OF DRAINAGE FOR HIGHWAYS
13.1 INTRODUCTION
13.1(1)
13.2 GENERAL GEOMETRIC AND PAVEMENT GUIDELINES THAT INFLUENCE DRAINAGE
13.2(2)
13.2.1 Pavement
13.2(1)
13.2.2 Grade
13.2(1)
13.2.3 Cross Slope
13.3(1)
13.2.4 Safety
13.4(1)
13.3 DESIGN FREQUENCY AND SPREAD
13.4(2)
13.3.1 Risk Balancing
13.4(1)
13.3.2 Design Guidance Regarding Frequency and Spread
13.5(1)
13.3.3 Selection of Check Storm and Spread
13.6(1)
13.4 SELECTION OF DESIGN HYDROLOGY
13.6(8)
13.4.1 Design Flow Calculation
13.6(2)
13.4.2 Rainfall Intensity by the Rational Method
13.8(1)
13.4.2.1 Sheet flow travel time
13.8(1)
13.4.2.2 Shallow concentrated flow velocity
13.9(1)
13.4.2.3 Gutter flow velocity
13.10(1)
13.4.2.4 Open channel and pipe flow velocity
13.10(1)
13.4.2.5 Combined shallow, gutter, open-channel, and pipe travel time
13.11(1)
13.4.2.6 Rainfall intensity as a function of duration and return period
13.12(1)
13.4.3 Rainfall Intensity by Avoidance of the Hydroplaning Method
13.12(1)
13.4.4 Rainfall Intensity by the Driver Vision-Impairment Method
13.13(1)
13.5 GUTTER DESIGN
13.14(2)
13.6 ROADSIDE DITCH DESIGN
13.16(11)
13.6.1 Steady Uniform Flow Design
13.17(1)
13.6.2 Water Surface Superelevation in Bends
13.18(2)
13.6.3 Shear Stresses in Open Channels
13.20(2)
13.6.4 Parameters for Stable Channel Design
13.22(5)
13.7 DRAINAGE INLET DESIGN
13.27(9)
13.7.1 Inlets
13.28(1)
13.7.2 Grate Inlet Design
13.29(3)
13.7.3 Curb-Opening Inlet Design
13.32(1)
13.7.4 Slotted Inlet Design
13.32(1)
13.7.5 Combination Inlet Design
13.33(1)
13.7.6 Design Adjustments for Sag Locations
13.33(2)
13.7.7 Inlet Locations
13.35(1)
13.8 BRIDGE-DECK DRAINAGE DESIGN
13.36(4)
13.8.1 Inlet Design for Constant-Grade Bridges
13.38(1)
13.8.2 Inlet Design for Flat Bridges
13.39(1)
13.9 SAMPLE PROBLEMS
13.40(3)
REFERENCES
13.43
CHAPTER 14 HYDRAULIC DESIGN OF URBAN DRAINAGE SYSTEMS
14.1 INTRODUCTION
14.1(2)
14.2 HYDRAULICS OF DRAINAGE CHANNELS
14.3(10)
14.2.1 Open-Channel Flow
14.4(4)
14.2.2 Surcharge Flow
14.8(1)
14.2.2.1 Standard transient pipe flow approach
14.8(2)
14.2.2.2 Hypothetical slot approach
14.10(3)
14.3 FLOW IN A SEWER
14.13(17)
14.3.1 Flow in a Single Sewer
14.13(6)
14.3.2 Discretization of Space-Time Domain of a Sewer for Simulation
14.19(1)
14.3.3 Initial and Boundary Conditions
14.20(2)
14.3.4 Storm Sewer Design with Rational Method
14.22(8)
14.4 HYDRAULICS OF SEWER JUNCTIONS
14.30(14)
14.4.1 Junction Classifications
14.30(2)
14.4.2 Junction Hydraulic Equations
14.32(2)
14.4.3 Experiments on Three-Way Sewer Junctions and Loss Coefficients
14.34(2)
14.4.4 Loss Coefficient for Two-Way Sewer Junctions
14.36(4)
14.4.5 Storage Junctions
14.40(2)
14.4.6 Point Junctions
14.42(2)
14.5 HYDRAULICS OF ASEWER NETWORK
14.44(6)
14.6 CAPACITY AND BOTTLENECK DETERMINATION
14.50(12)
14.6.1 Hydraulic Performance Graph
14.51(4)
14.6.2 Flow Capacities of a Channel Reach
14.55(1)
14.6.3 Bottleneck and Channel System Capacity Determination
14.56(6)
14.7 HYDRAULICS OF OVERLAND FLOW
14.62(6)
14.7.1 Overland Flow and Resistance Equations
14.62(3)
14.7.2 Kinematic Wave Modeling of Overland Flow
14.65(2)
14.7.3 Time of Concentration
14.67(1)
14.8 MODELING OF CATCHMENT RUNOFF
14.68(8)
14.8.1 Scientific Fineness versus Practical Simplicity
14.68(2)
14.8.2 Modeling Procedure
14.70(2)
14.8.3 Selected Catchment Hydraulic Simulation Models
14.72(1)
14.8.4 Verification and Calibration of Models
14.72(4)
14.9 DETENTION AND RETENTION STORAGE
14.76(16)
14.9.1 Detention Basins
14.76(4)
14.9.1.1 Detention basin design guidelines
14.80(1)
14.9.1.2 Outlet structures
14.80(1)
14.9.1.3 Stage storage relationships
14.81(1)
14.9.1.4 Detention pond design aids
14.82(4)
14.9.2 Extended Detention Basins
14.86(1)
14.9.2.1 Detention volume and time
14.86(1)
14.9.2.2 Extended detention outlet structures
14.87(2)
14.9.2.3 Extended detention basin design considerations
14.89(1)
14.9.3 Retention Basins
14.89(1)
14.9.3.1 Permanent pool volume
14.89(1)
14.9.3.2 Retention basin design considerations
14.90(2)
14.9.4 Computer Models for Detention and Retention Basin Design
14.92(1)
14.10 SEWER HYDRAULIC SIMULATION MODELS
14.92(14)
14.10.1 Hydraulic Properties of Selected Dynamic Wave Sewer Models
14.94(1)
14.10.1.1 Explicit scheme model: SWMM-EXTRAN
14.94(2)
14.10.1.2 Dynamic wave model handling only open-channel flow: ISS
14.96(2)
14.10.1.3 Dynamic wave models handling both open-channel and surcharge flows
14.98(2)
14.10.2 Hydraulic Properties of Noninertia Sewer Models
14.100(1)
14.10.3 Nonlinear Kinematic Wave Models
14.100(6)
REFERENCES
14.106
CHAPTER 15 HYDRAULICS DESIGN OF CULVERTS AND HIGHWAY STRUCTURES
15.1 INTRODUCTION
15.1(1)
15.2 DESIGN PARAMETERS
15.2(2)
15.2.1 Headwater and Tailwater
15.2(1)
15.2.2 Outlet Velocity
15.3(1)
15.3 CHARACTERISTICS OF FLOW
15.4(12)
15.3.1 Inlet Control
15.4(1)
15.3.2 Outlet Control
15.5(8)
15.3.3 Outlet Velocity
15.13(1)
15.3.4 Roadway Overtopping
15.14(2)
15.4 METHOD OF CULVERT DESIGN
15.16(9)
15.4.1 Inlet Control
15.17(1)
15.4.1.1 Design Equations
15.17(1)
15.4.2 Outlet Control
15.17(1)
15.4.2.1 Design Equations
15.18(2)
15.4.2.2 Nomographs
15.20(5)
15.5 PERFORMANCE CURVES
15.25(2)
15.6 MATERIALS AND CULVERT GEOMETRY
15.27(3)
15.7 LOCATION AND ALIGNMENT OF CULVERTS
15.30(7)
15.7.1 Bottom Location Placement
15.30(1)
15.7.2 Top Location Placement
15.31(1)
15.7.3 Siphons
15.32(1)
15.7.4 End treatments
15.32(5)
15.8 SPECIAL CONSIDERATIONS
15.37(2)
15.8.1 Erosion
15.37(1)
15.8.2 Sedimentation
15.38(1)
15.8.3 Control of Debris
15.38(1)
15.9 STREAM STABILITY AT HIGHWAY STRUCTURES
15.39(9)
15.9.1 Basic Engineering Analysis
15.39(4)
15.9.2 Countermeasures (Flow Control Structure) for Stream Instability
15.43(3)
15.9.2.1 Spurs 44
15.9.2.2 Check Dams (Channel Drop Structures)
15.46(2)
15.10 BRIDGE SCOUR
15.48(18)
15.10.1 Design Approach
15.48(1)
15.10.2 Contraction Scour
15.49(1)
15.10.2.1 Live-Bed Contraction Scour
15.50(8)
15.10.3 Local Scour at Piers
15.58(3)
15.10.4 Live-Bed Scour at Abutments
15.61(5)
15.11 COMPUTER MODELS FOR CULVERTS AND SEDIMENTATION
15.66(4)
15.11.1 Computer Models for Culverts
15.66(1)
15.11.1.1 HYDRAIN-Integrated Drainage Design Computer System
15.66(1)
15.11.1.2 Culvert Design System
15.67(1)
15.11.1.3 HY8 (spell out HY?)
15.67(1)
15.11.1.4 CULVERT2 (English Units), CULVERT3 (Metric Units)
15.67(1)
15.11.1.5 Culvert Analysis Program
15.67(1)
15.11.2 Computer Models for Sedimentation
15.68(1)
15.11.2.1 HEC-6 (spell out?)
15.68(1)
15.11.2.2 Generalized Stream Tube Model for Alluvial River Simulation (GSTARS 2.0)
15.68(1)
15.11.2.3 Surfacewater Modeling System (Surfacewater, all one word)
15.68(1)
15.11.2.4 Bridge Stream Tube Model for Alluvial River Simulation (BRISTARS)
15.69(1)
15.11.2.5 HY9
15.69(1)
REFERENCES
15.70
CHAPTER 16 HYDRAULIC DESIGN OF FLOOD CONTROL CHANNELS
16.1 INTRODUCTION
16.1(1)
16.2 DESIGN CONCEPTS
16.2(8)
16.2.1 Flood-Control Channel Design
16.2(1)
16.2.2 Open-Channel Flow
16.3(1)
16.2.2.1 Types of flow
16.3(1)
16.2.2.2 Resistance to flow and boundary shear stress.
16.3(2)
16.2.3 Flood-Control Channel Components
16.5(1)
16.2.4 Stable Channels
16.6(1)
16.2.4.1 Stable channel modes.
16.6(1)
16.2.4.2 Tractive force
16.7(1)
16.2.5 Design Parameters
16.8(2)
16.3 CHANNEL LININGS
16.10(9)
16.3.1 Lining Types
16.10(1)
16.3.2 Performance Data
16.10(1)
16.3.2.1 Rigid linings.
16.10(1)
16.3.2.2 Flexible linings.
16.11(1)
16.3.3 Information About Flexible Linings
16.11(1)
16.3.3.1 Long-term, Nondegradable flexible linings.
16.11(6)
16.3.3.2 Temporary degradable flexible linings.
16.17(2)
16.4 MILD-GRADIENT CHANNEL DESIGN (SYMMETRIC SECTION)
16.19(16)
16.4.1 Resistance to Flow
16.20(1)
16.4.1.1 Rigid and flexible lining materials
16.20(1)
16.4.1.2 Vegetative linings.
16.20(2)
16.4.1.3 Flexible linings.
16.22(2)
16.4.2 Tractive Force Design
16.24(2)
16.4.3 Permissible Shear Stress
16.26(3)
16.4.4 Boundary Shear Stress
16.29(6)
16.5 STEEP-GRADIENT CHANNEL DESIGN
16.35(3)
16.5.1 Resistance to Flow in Steep-Gradient Channels
16.35(1)
16.5.2 Permissible Shear Stress in Steep Gradient-Channels
16.36(1)
16.5.3 Boundary Shear Stress in Steep Gradient Channels
16.36(2)
16.6 COMPOSITE-SECTION CHANNEL DESIGN
16.38(1)
16.6.1 Resistance to Flow
16.39(1)
16.6.2 Boundary Shear
16.39(1)
16.6.3 Special Considerations
16.39(1)
16.7 CHANNELS WITH SEDIMENT TRANSPORT
16.39(3)
16.7.1 Sediment Supply
16.39(1)
16.7.2 Sediment Transport
16.40(1)
16.6.3 Aggradation-Degradation
16.41(1)
16.7.4 Resistance to Flow
16.42(1)
REFERENCES
16.42
CHAPTER 17 HYDRAULIC DESIGN OF SPILLWAYS
17.1 INTRODUCTION
17.1(1)
17.2 OVERFLOW SPILLWAYS
17.1(12)
17.3 OVERFALL SPILLWAYS
17.13(5)
17.4 IDE-CHANNEL SPILLWAYS
17.18(2)
17.5 ORIFICE SPILLWAYS
17.20(2)
17.6 MORNING-GLORY SPILLWAYS
17.22(8)
17.7 LABYRINTH SPILLWAYS
17.30(2)
17.8 SIPHON SPILLWAYS
17.32(4)
17.8.1 (Standard) Siphon Spillways
17.32(2)
17.8.2 (Air-Regulated) Siphon Spillways
17.34(2)
17.9. TUNNEL SPILLWAYS
17.36(2)
17.9.1 Entrance Structure
17.36(1)
17.9.2 Inclined Tunnel Section
17.36(1)
17.9.3 Flat-Tunnel Section
17.36(2)
17.9.4 Flip-Bucket
17.38(1)
17.10 SPILLWAY CHUTES
17.38(2)
17.10.1 Smooth Chute
17.38(1)
17.10.2 Stepped Chute
17.38(2)
17.11 SPILLWAY AERATION RAMPS
17.40(9)
17.12 SAMPLE DESIGNS
17.49(3)
17.12.1 Design Head
17.49(1)
17.12.2 Discharge Coefficient
17.49(1)
17.12.3 Crest Length
17.49(1)
17.12.4 Minimum Pressure on the Crest
17.50(1)
17.12.5 Discharge Rating Curve
17.50(1)
17.12.6 Crest Geometry
17.51(1)
REFERENCES
17.52
CHAPTER 18 HYDRAULIC DESIGN OF STILLING BASISNS AND ENERGY DISSIPATORS
18.1 INTRODUCTION
18.1(2)
18.2 STILLING BASINS
18.3(21)
18.2.1 General Hydraulic Jump Basin (Basin I)
18.3(1)
18.2.2 Stilling Basins for High Dam and Earth Dam Spillways and Large Canal Structures (Basin II)
18.3(6)
18.2.3 Short Stilling Basins for Canal Structures, Small Outlet Works, and Small Spillways [Basin III and the St. Anthony (SAF) Basin]
18.9(4)
18.2.4 Low Froude Number Stilling Basins (Basin IV and Modified Basin IV)
18.13(4)
18.2.5 Stilling Basin with Sloping Apron
18.17(6)
18.2.6 Other Types of Stilling Basins
18.23(1)
18.2.7 Fluctuating Pressures on Stilling Basin Floors
18.23(1)
18.3 DROP-TYPE ENERGY DISSIPATORS
18.24(1)
18.4 WAVE SUPPRESSORS
18.25(4)
18.4.1 Raft-Type Wave Suppressors
18.26(1)
18.4.2 Underpass-Type Wave Suppressors
18.27(2)
18.5 IMPACT-TYPE STILLING BASIN FOR PIPE OR OPEN CHANNEL OUTLETS
18.29(4)
18.6 BAFFLED APRON FOR CANAL OR SPILLWAY DROPS (BASIN IX)
18.33(5)
18.7 RIPRAP FOR STILLING BASIN DOWNSTREAM PROTECTIONS
18.38(1)
18.8 SUBMERGED DEFLECTOR BUCKETS
18.38(6)
18.9 FLIP BUCKETS
18.44(5)
18.9.1 Gas Supersaturation
18.49(1)
18.9.2 Abrasion in Stilling Basins
18.49(1)
18.10 STILLING BASIN DESIGN EXAMPLES
18.49(5)
18.10.1 Design Example
18.49(2)
18.10.2 Design Example
18.51(3)
REFERENCES
18.54
CHAPTER 19 FLOODPLAIN HYDRAULICS
19.1 LOCATING EXISTING DATA SOURCES FOR FLOOD PLAIN STUDIES
19.2(7)
19.1.1 Sources of Topographic Data
19.3(4)
19.1.2 Aerial Photography
19.7(1)
19.1.3 Highway or Street Maps
19.7(1)
19.1.4 Construction Drawings
19.7(1)
19.1.5 Stream Gage Data
19.8(1)
19.1.6 Personal Observations
19.9(1)
19.2 OBTAINING FIELD SURVEY DATA FOR FLOOD PLAIN STUDIES
19.9(12)
19.2.1 Vertical and Horizontal Control for Field Surveys
19.10(1)
19.2.2 Cross-Section Locations
19.11(2)
19.2.3 Cross-Section Alignment and Orientation
19.13(3)
19.2.4 Use of Aerial Topography and Contour Map Data
19.16(1)
19.2.5 Road Crossing Data
19.17(1)
19.2.6 Using Repeated Cross-Sections for Roadway Crossings
19.18(1)
19.2.7 Obtaining Bridge Survey Data
19.19(2)
19.2.8 Culvert Data
19.21(1)
19.2.9 Channel Structures
19.21(1)
19.3 SELECTING THE BEST APPROACH FOR FLOOD PLAIN STUDY
19.21(7)
19.3.1 One-Dimensional and Two-Dimensional Flows
19.21(1)
19.3.2 Changes in Flow Depth With Respect to Time and Distance
19.22(1)
19.3.3 Critical Flow and Critical Depth
19.23(1)
19.3.4 Types of Stream Systems
19.23(2)
19.3.5 Computer Programs Widely Used in Flood Plain Analysis
19.25(1)
19.3.6 Two-Dimensional Water-Surface Computer Models
19.26(1)
19.3.7 One-Dimensional Unsteady Flow Models
19.26(1)
19.3.8 Selecting a Computer Program for a Flood Plain Analysis
19.27(1)
19.4 PERFORMING A FLOOD PLAIN STUDY
19.28(11)
19.4.1 Computing Water Surface Profiles
19.28(1)
19.4.2 Starting Conditions for Water Surface Computations
19.28(2)
19.4.3 Starting Conditions for Tributary Stream Analysis
19.30(3)
19.4.4 Standard Step Computations
19.33(1)
19.4.5 Roughness Coefficients
19.33(1)
19.4.6 Representative Friction Slope For a Channel Reach
19.34(3)
19.4.7 Cross-Section Interpolation
19.37(1)
19.4.8 Super-Critical Flow Regime Calculations
19.37(1)
19.4.9 Mixed Flow Regime Calculations
19.37(2)
19.5 ENSURING THE QUALITY OF A FLOOD PLAIN ANALYSIS
19.39(6)
19.5.1 Reviewing Program Messages
19.39(2)
19.5.2 Reviewing the Stream Profile
19.41(1)
19.5.3 Reviewing Output Summary Tables
19.42(1)
19.5.4 Reviewing the Input Data
19.43(1)
19.5.5 Skewed Cross-Sections
19.43(1)
19.5.6 Detailed Analysis of Roadway Crossings
19.44(1)
19.5.7 Verification and Adjustment of Flood Plain Analysis
19.44(1)
19.6 FLOODWAY DETERMINATION
19.45(3)
19.7 CONCLUSION
19.48(1)
REFERENCES
19.49
CHAPTER 20 FLOW TRANSITIONS AND ENERGY DISSIPATORS FOR CULVERTS AND CHANNELS
20.1 FLOW TRANSITIONS FOR CULVERTS
20.1(15)
20.1.1 Culverts with Outlet Control
20.11(11)
20.1.2 Culverts with Inlet Control
20.12(4)
20.2 Energy Dissipation for Culverts and Channels
20.16(29)
20.2.1 Hydraulic Jump Basins
20.16(4)
20.2.2 Forced Hydraulic Jump Basins
20.20(1)
20.2.2.1 SAF Stilling Basin
20.20(5)
20.2.2.2 USBR Type II, III, and IV Basins
20.25(4)
20.2.3 Impact-Type Energy Dissipation (USBR Type VI Basin)
20.29(3)
20.2.4 Drop Structures
20.32(1)
20.2.4.1 Straight Drop Spillway
20.32(2)
20.2.4.2 Grated Energy Dissipators
20.34(1)
20.2.4.3 Straight Drop Structures
20.35(3)
20.2.4.4 Box Inlet Drop Structure
20.38(6)
20.2.5 Riprap Basins
20.44(1)
REFERENCES
20.45
CHAPTER 21 HYDRAULIC DESIGN OF FLOW MEASURING STRUCTURES
21.1 INTRODUCTION
21.1(1)
21.2 HYDRAULIC CONCEPTS RELATED TO WATER MEASUREMENT
21.2(7)
21.2.1 Basic Concepts for Pipe and Channel Flows
21.2(2)
21.2.2 Pipe Hydraulics
21.4(1)
21.2.3 Channel Hydraulics
21.5(2)
21.2.4 Energy Balance Relationships in Channels
21.7(1)
21.2.5 Modeling Characteristics for Open Channels
21.8(1)
21.3 BASIC PRINCIPLES OF WATER MEASUREMENT
21.9(5)
21.3.1 Water Meter Classification
21.9(1)
21.3.2 Installation Requirements
21.10(2)
21.3.3 Examples of Flow Conditioning in Field Situations
21.12(1)
21.3.4 Wave Suppression
21.13(1)
21.4 MEASUREMENT ACCURACY
21.14(4)
21.4.1 Definitions of Terms Related to Accuracy
21.15(1)
21.4.2 Terms Related to Measurement Capability
21.16(1)
21.4.3 Comparison Standards
21.17(1)
21.5 SELECTION OF PRIMARY ELEMENTS OF WATER MEASURING DEVICES
21.18(7)
21.5.1 General Requirements
21.18(1)
21.5.2 Types of Measuring Devices
21.18(7)
21.5.3 Selection Guidelines
21.25(1)
21.6 SELECTION OF SECONDARY DEVICES FOR DISCHARGE READOUT AND CONTROL
21.25(4)
21.6.1 Intended Uses
21.25(4)
21.6.2 Quality Assurance
21.29(1)
21.7 APPLICATIONS OF LONG-THROATED FLUMES
21.29(15)
21.7.1 Structures for Lined Trapezoidal Canals
21.33(5)
21.7.2 Rectangular Structures for Unlined Canals
21.38(3)
21.7.3 Structures for Circular Channels
21.41(3)
21.8 FIELD SIMPLIFIED, EXPEDIENT MEASUREMENT TECHNIQUES
21.44(5)
21.8.1 Channel Roughness Measurement and Water Surface Profile Measurements
21.44(1)
21.8.2 Portable Flow Measuring Flumes
21.45(1)
21.8.3 Surface Floats
21.45(1)
21.8.4 Checking a Flow Profile
21.46(1)
21.8.5 Low-Pressure Pipe Venturi
21.46(3)
25.9 ACKNOWLEDGMENTS
21.49(1)
REFERENCES
21.49
CHAPTER 22 WATER AND WASTEWATER TREATMENT PLANT HYDRAULICS
22.1 INTRODUCTION
22.1(1)
22.2 GENERAL
22.2(6)
22.2.1 Introduction
22.2(1)
22.2.2 Flow Distribution -- Manifolds
22.2(1)
22.2.2.1 Distribution Boxes
22.2(1)
22.2.2.2 Distribution Channels and Pipe Manifolds
22.2(1)
22.2.3 Gates and Valves
22.3(1)
22.2.3.1 Gates
22.3(1)
22.2.3.2 Valves
22.3(1)
22.2.4 Flow Meters
22.4(1)
22.2.4.1 Pressure Differential/Pressure Measuring Meters
22.5(1)
22.2.4.2 Magnetic Meters
22.5(1)
22.2.4.3 Doppler (Ultrasonic Meters)
22.6(1)
22.2.4.4 Mechanical Meters
22.6(1)
22.2.5 Local Losses
22.6(2)
22.3 HYDRAULICS OF WATER TREATMENT PLANTS
22.8(28)
22.3.1 Introduction
22.8(1)
22.3.1.1 Sources of Supply
22.9(1)
22.3.1.2 Treatment Requirements
22.9(1)
22.3.1.3 General Design Philosophy
22.9(1)
22.3.2 Hydraulic Design Considerations in Process Selection
22.10(1)
22.3.2.1 Head Available
22.10(1)
22.3.2.2 Typical Unit Process Head Requirements
22.10(2)
22.3.3 Hydraulic Considerations in Plant Siting
22.12(1)
22.3.4 Hydraulic Considerations in Plant Layout
22.12(1)
22.3.5 Bases for Design
22.12(1)
22.3.5.1 Design Flows
22.12(1)
22.3.5.2 Rated Treatment Capacity
22.13(1)
22.3.5.3 Hydraulic Treatment Capacity
22.13(1)
22.3.5.4 Treatment Process Bases of Design
22.13(1)
22.3.6 Plant Hydraulic Design
22.13(2)
22.3.6.1 Plant Operating Modes
22.15(3)
22.3.6.2 Plant Flow Diagrams
22.18(1)
22.3.6.3 Hydraulic Profile
22.18(1)
22.3.7 Water Treatment Plant Process Hydraulics
22.19(1)
22.3.7.1 Coagulation
22.19(7)
22.3.7.2 Filtration
22.26(8)
22.3.8 Membrane Technology
22.34(2)
22.4 WASTEWATER TREATMENT
22.36(44)
22.4.1 Wastewater Treatment Planning
22.36(1)
22.4.1.1 Service Area and Flows
22.36(2)
22.4.1.2 Effluent Requirements
22.38(1)
22.4.1.3 Process Selection
22.38(1)
22.4.1.4 Hydraulic Bases for Design
22.38(1)
22.4.1.5 Flow Diagram
22.39(1)
22.4.1.6 Plant Siting
22.39(1)
22.4.1.7 Plant Layout
22.39(2)
22.4.1.8 Hydraulic Profile and Calculations
22.41(1)
22.4.2 Typical Unit Process Hydraulics
22.41(1)
22.4.2.1 Bar Screens
22.41(2)
22.4.2.2 Grit Tanks
22.43(4)
22.4.2.3 Sedimentation Tanks
22.47(6)
22.4.2.4 Aeration Tanks
22.53(12)
22.4.2.5 Granular Media Filter
22.65(6)
22.4.2.6 Mixing and Contact Chambers
22.71(1)
22.4.2.7 Cascade Aerators
22.72(1)
22.4.2.8 Effluent Outfall
22.72(5)
22.4.2.9 Slurry and Chemical Pumping
22.77(3)
22.5 NON-NEWTONIAN FLOW CONSIDERATIONS
22.80(10)
22.5.1 Headloss Computation
22.85(5)
REFERENCES
22.90(1)
APPENDIX
22.91
CHAPTER 23 HYDRAULIC DESIGN FOR GROUNDWATER CONTAMINATION
23.1 INTRODUCTION
23.1(6)
23.1.1 Unique Features of In Situ Treatment Technology Design
23.1(1)
23.1.2 Overview
23.2(1)
23.1.3 Groundwater Contamination Scenarios-Point Versus Area Sources
23.2(2)
23.1.4 Groundwater Contamination Scenarios-Segregation by Contaminant Type
23.4(1)
23.1.5 Groundwater Contamination Scenarios-Subsurface Contaminant Distributions
23.4(3)
23.2 REMEDIATION GOALS
23.7(5)
23.2.1 Maximun Contaminant Levels (MCL)
23.8(1)
23.2.2 Risk-Based Target Levels
23.8(1)
23.2.3 Resource Protection Goals
23.8(1)
23.2.4 Application of the Target Levels--Remediation, Points of Compliance, and Containment
23.8(4)
23.3 INSITU TREATMENT TECHNOLOGIES-GENERAL CLASSIFICATIONS
23.12(2)
23.3.1 Source Zone Treatment Technologies
23.12(1)
23.3.2 Aquifer Restoration Technologies
23.12(2)
23.3.3 Contaminant Migration Prevention
23.14(1)
23.4 GENERIC TECHNOLOGY SELECTION AND DESIGN PROCESS
23.14(11)
23.4.1 Site Assessment and Conceptual Model Development
23.14(8)
23.4.2 Select Target Treatment Levels
23.22(1)
23.4.3 Identify Potential Technologies
23.22(1)
23.4.4 Screening Level Calculations
23.22(2)
23.4.5 Decision Point--Is the Technology Appropriate?
23.24(1)
23.4.6 Pilot Testing
23.24(1)
23.4.7 Decision Point--Is the Technology Appropriate?
23.24(1)
23.4.8 Initial Design
23.24(1)
23.4.9 Operation and Monitoring
23.25(1)
23.4.10 Design Refinement
23.25(1)
23.4.11 Decision Point-Have the Treatment Goals Been Met?
23.25(1)
23.5 SOURCE ZONE TREATMENT
23.25(35)
23.5.1 Free-Product Recovery
23.25(1)
23.5.1.1 Free-Product Liquid Monitoring
23.26(1)
23.5.1.2 Maximum Achievable Free-Product Liquid Recovery
23.27(1)
23.5.1.3 Free-Product Liquid Recovery System Designs
23.28(1)
23.5.1.4 Trench Systems
23.28(1)
23.5.1.5 Vertical Recovery Well Schemes
23.28(6)
23.5.2 Soil Vapor Extraction
23.34(1)
23.5.2.1 Soil Vapor Extraction Overview
23.34(1)
23.5.2.2 Feasibility Assessment
23.35(5)
23.5.2.3 Soil Vapor Extraction Pilot Tests
23.40(2)
23.5.2.4 Soil Vapor Extraction System Design
23.42(8)
23.5.3 Groundwater Pump and Treat Systems for Source Zone Treatment
23.50(2)
23.5.4 Bioventing
23.52(1)
23.5.4.1 Background
23.52(1)
23.5.4.2 General Bioventing Design Principles
23.53(1)
23.5.4.3 In situ Respirometry Tests
23.53(2)
23.5.4.4 Design calculations
23.55(1)
23.5.4.5 Sample pilot test data and design calculations
23.55(1)
23.5.5 In Situ Air Sparging
23.55(1)
23.5.5.1 Background
23.55(2)
23.5.5.2 Design Principles
23.57(1)
23.5.5.3 Short-term Pilot Tests
23.58(2)
23.6 DISSOLVED PLUME TREATMENT TECHNOLOGIES
23.60(1)
23.6.1 Natural Attenuation
23.60(1)
23.7 CONTAMINANT MIGRATION BARRIERS
23.61(7)
23.7.1 Background
23.61(1)
23.7.2 Hydraulic Containment Systems
23.61(2)
23.7.3 Reaction-Based Contaminant Migration Barriers
23.63(2)
23.7.4 Air Sparging Cut-Off Trenches
23.65(3)
23.8 SUMMARY
23.68(1)
REFERENCES
23.68
CHAPTER 24 ARTIFICIAL RECHARGE OF GROUNDWATER: SYSTEMS, DESIGN AND MANAGEMENT
24.1 ABSTRACT
24.1(1)
24.2 INTRODUCTION
24.2(1)
24.3 SYSTEMS
24.2(5)
24.3.1 Surface Systems
24.4(2)
24.3.2 Trenches, Shafts, and Wells
24.6(1)
24.4 INFILTRATION
24.7(9)
24.4.1 Infiltration Rates
24.7(1)
24.4.2 Cylinder Infiltrometers
24.8(2)
24.4.3 Clogging
24.10(2)
24.4.4 Effect of Water Depth on Infiltration
24.12(1)
24.4.5 Effect of Groundwater Depth on Infiltration Rate
24.13(1)
24.4.6 Induced Recharge
24.14(2)
24.5 GROUNDWATER MOUNDING
24.16(4)
24.5.1 Perched Groundwater Mounds
24.16(2)
24.5.2 Groundwater Mounds
24.18(2)
24.6 CHALLENGING SOILS
24.20(7)
24.7 PILOT BASINS AND SYSTEM DESIGN
24.27(2)
24.7.1 Test Basins
24.27(1)
24.7.2 Design and Management
24.28(1)
24.8 SUBSURFACE SYSTEMS
24.29(4)
24.8.1 Vadose Zone Wells
24.29(1)
24.8.2 Seepage Trenches
24.30(1)
24.8.3 Aquifer Wells
24.31(1)
24.8.4 Aquifer Storage and Recovery (ASR) Wells
24.32(1)
24.9 ROLE OF RECHARGE IN WATER REUSE
24.33(9)
24.9.1 Quality Criteria
24.33(1)
24.9.2 Artificial Recharge and Soil-Aquifer Treatment
24.34(4)
24.9.3 Well Recharge with Sewage Effluent
24.38(1)
24.9.4 Constructed Aquifers
24.39(1)
24.9.5 Potable Reuse after Soil Aquifer Treatment
24.40(1)
24.9.6 Integrated Water Management
24.41(1)
REFERENCES
24.42
Index follows Chapter 24

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program