did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

did-you-know? rent-now

Amazon no longer offers textbook rentals. We do!

We're the #1 textbook rental company. Let us show you why.

9780306457432

Integration of Pharmaceutical Discovery and Development

by ; ; ;
  • ISBN13:

    9780306457432

  • ISBN10:

    0306457431

  • Format: Hardcover
  • Copyright: 1998-09-01
  • Publisher: Plenum Pub Corp
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $349.99

Summary

This volume provides case histories illustrating the types of interdisciplinary interactions necessary to design drug candidates with optimal pharmacological, pharmaceutical, biopharmaceutical, and metabolic/pharmacokinetic properties. Key features include an incisive discussion of HIV protease inhibitors and 287 illustrations.

Table of Contents

Chapter 1 Introduction
1(6)
Ralph Hirschmann
Chapter 2 Renin Inhibitors
7(22)
Saul H. Rosenberg
Hollis D. Kleinert
1. The Renin Angiotensin System (RAS)
7(1)
2. In Vitro Assays
8(2)
3. Renin Inhibitor Design
10(14)
3.1 Novel Transition-State Analogues
10(2)
3.2 Models to Evaluate Pharmacological Responses
12(1)
3.3 Molecular Weight, Proteolytic Stability, and Aqueous Solubility
13(4)
3.4 Renin Inhibitors with Oral Bioavailability
17(7)
4. Conclusions
24(1)
References
25(4)
Chapter 3 The Discovery and Development of Angiotensin II Antagonists
29(28)
David J. Carini
David D. Christ
John V. Duncia
Michael E. Pierce
1. Introduction
29(1)
2. Development of a Tetrazole Derivative
30(14)
2.1 Chemical Stability and Potential Toxicity of Tetrazoles
30(2)
2.2 Metabolism of Tetrazoles
32(1)
2.3 The Search for Tetrazole Replacements
33(6)
2.4 Synthetic Availability of Biphenyltetrazoles
39(5)
3. An Active Metabolite of Losartan
44(3)
3.1 Identification of EXP3174
44(1)
3.2 Should We Develop EXP3174?
45(1)
3.3 The Search for a Superior EXP3174 Analogue
45(2)
4. Early Evaluation of Losartan's Activity in Humans
47(1)
5. Selective versus Balanced Angiotensin II Receptor Antagonists
48(3)
6. Conclusion
51(1)
References
52(5)
Chapter 4 Development of an Orally Active Tripeptide Arginal Thrombin Inhibitor
57(24)
Robert T. Shuman
Paul D. Gesellchen
1. Introduction
57(3)
2. Identification of Lead Compounds
60(9)
2.1 In Vitro Structure-Activity Relationships
61(3)
2.2 In Vivo Structure-Activity Relationships
64(5)
3. Development of Parenteral Clinical Candidate
69(1)
3.1 Development of Licensed Compound (Efegatran)
69(1)
3.2 Summary of Clinical Data on Efegatran
70(1)
4. Development of an Oral Candidate
70(7)
4.1 In Vivo Oral Bioavailability
71(2)
4.2 Oral Dosing in Efficacy Models
73(1)
4.3 Pharmacokinetics of Oral Candidate
73(2)
4.4 Clinical Data for Oral Candidate
75(2)
5. Conclusion
77(1)
References
78(3)
Chapter 5 Discovery and Development of an Endothelin A Receptor-Selective Antagonist PD 156707
81(32)
Annette M. Doherty
Andrew C.G. Uprichard
1. Introduction
81(3)
2. Discovery of PD 156707: Medicinal Chemistry, Pharmacology, and Pharmacokinetics
84(12)
2.1 Identification of Lead Structures
84(2)
2.2 Structure-Activity Relationships
86(1)
2.3 Pharmacokinetics/Selection
87(2)
2.4 Chemistry/Chemical Development
89(1)
2.5 Biological Evaluation of PD 156707
90(2)
2.6 Metabolism
92(1)
2.7 Assay Development
93(3)
3. Efficacy Studies: Which Disease States?
96(7)
3.1 Hypertension
96(3)
3.2 Heart Failure
99(1)
3.3 Pulmonary Hypertension
100(3)
3.4. Stroke
103(1)
4. Future Plans
103(2)
5. Summary
105(1)
References
105(8)
Chapter 6 Endothelin Receptor Antagonists
113(18)
John D. Elliott
Eliot H. Ohlstein
Catherine E. Peishoff
Harma M. Ellens
M. Amparo Lago
1. Introduction
113(2)
2. Rational Design of SB 209670
115(6)
3. Pharmacological, Drug Metabolism, and Pharmacokinetic Characterization of SB 209670
121(1)
4. Selection of the Orally Bioavailable Candidate SB 217242
121(6)
5. Conclusion
127(1)
References
127(4)
Chapter 7 LHRH Antagonists
131(20)
Fortuna Haviv
Eugene N. Bush
Judith Knittle
Jonathan Greer
1. Mechanism of Action of LHRH Agonists and Antagonists
131(2)
2. Structural Differences of LHRH Agonists and Antagonists
133(4)
2.1 Reduction of Size of LHRH Analogues
135(1)
2.2 Enzymatic Stability of LHRH Analogues and Effect of N-methyl Substitution on Enzymatic Stability of LHRH Agonists
136(1)
2.3 Effect of N-methyl Substitution on Water Solubility of LHRH Antagonists. Discovery of A-75998
137(1)
3. Biological Testing Strategy
137(4)
3.1 In Vitro Testing of A-75998: Receptor Binding, Inhibition of LH Release, and Histamine Release
138(1)
3.2 In Vivo Studies of A-75998 in Rat, Dog, and Monkey
138(2)
3.3 Pharmacokinetics of A-75998 in Rat, Dog, and Monkey
140(1)
4. Aggregation and Formulation of A-75998
141(3)
5. LHRH Antagonists in Clinical Evaluation
144(2)
5.1 Clinical Study of A-75998
144(1)
5.2 Current LHRH Antagonists in Clinical Studies
144(2)
6. Summary
146(1)
References
146(5)
Chapter 8 LHRH Agonists
151(32)
Kenneth W. Funk
Jonathan Greer
Akwete L. Adjei
1. Introduction
151(6)
1.1 Background
152(1)
1.2. Drug Candidate Selection
153(4)
2. Physical Chemistry and Chemical Characterization
157(8)
2.1. Bulk Drug Synthesis
158(2)
2.2. Manufacturing Controls
160(1)
2.3. Physical Characteristics and Methods
161(2)
2.4. Chemical Characterization and Methods
163(1)
2.5. Moisture and Acetic Acid
163(1)
2.6. Amino Acid Analysis
164(1)
3. Formulation Chemistry of Leuprolide Acetate
165(4)
3.1. In Vitro Studies
165(1)
3.2. In Vivo Studies
166(3)
4. Clinical Development
169(9)
4.1 Standards and Controls
169(2)
4.2. Physical and Chemical Characterization
171(3)
4.3. Pathology and Toxicology
174(3)
4.4. Clinical Pharmacokinetics and Pharmacodynamics
177(1)
5. Conclusions
178(1)
References
179(4)
Chapter 9 Discovery and Development of Somatostatin Agonists
183(28)
Peter Marbach
Wilfried Bauer
David Bodmer
Ulrich Briner
Christian Bruns
Andrea Kay
Ioana Lancranjan
Janos Pless
Friedrich Raulf
Rodney Robison
John Sharkey
Thomas Soranno
Barbara Stolz
Peter Vit
Gisbert Weckbecker
1. Introduction
183(1)
2. Somatostatin Receptors
184(2)
2.1. Heterogeneity of Somatostatin Receptors
184(1)
2.2. The Somatostatin Receptor Gene Family
184(1)
2.3. Tissue Distribution
185(1)
2.4. Pharmacology
186(1)
3. Discovery and Development of Sandostatin(R)
186(7)
3.1. Synthesis of Octreotide
189(1)
3.2. Pharmacodynamic Tests
190(1)
3.3. Pharmacokinetic Studies
191(1)
3.4. Toxicology
191(1)
3.5. Clinical Development
192(1)
4. Development of Sandostatin(R) LAR(R)
193(3)
4.1. Manufacture
194(1)
4.2. Preclinical Studies
194(1)
4.3. Clinical Studies
195(1)
5. Oncolar(TM): Technical Development of a New LAR Formulation of Octreotide
196(1)
5.1. Manufacture
196(1)
5.2. Preclinical Studies
196(1)
6. Antiproliferative Effects of Single-Agent Octreotide
197(4)
6.1. Mechanism of Antiproliferative Action
198(1)
6.2. Route of Administration and Plasma Levels
199(1)
6.3. Octreotide as a Potentiator of Standard Anticancer Regimens
199(2)
7. Development of Octreotide for Oncological Uses beyond the Control of Disease-Related Symptoms in GEP Tumors
201(1)
7.1. Somatostatin Receptor Binding and Growth Factor Suppression
201(1)
7.2. Clinical Trials
202(1)
8. Radiolabeled Octreotide Analogues
202(2)
8.1. Imaging of Tumors with OctreoScan(R)
203(1)
8.2. Tumor Radiotherapy with SMT 487
203(1)
9. Summary and Outlook
204(1)
References
205(6)
Chapter 10 Factors Impacting the Delivery of Therapeutic Levels of Pyrone-Based HIV Protease Inhibitors
211(22)
Guy E. Padbury
Gail L. Zipp
Francis J. Schwende
Zhiyang Zhao
Kenneth A. Koeplinger
Kong Teck Chong
Thomas J. Raub
Suvit Thaisrivongs
1. Introduction
211(5)
1.1. HIV Protease as a Therapeutic Target
211(2)
1.2. Pyrone-Based Inhibitors
213(2)
1.3. Factors that Affect Drug Delivery
215(1)
1.4. Life in a Perfect World
215(1)
2. Efficacy
216(4)
2.1. Effect/Importance of Protein Binding
216(3)
2.2. Clinical Targets
219(1)
3. Pharmacokinetics
220(5)
3.1. Total versus Unbound Intrinsic Clearance
220(1)
3.2. Factors Affecting Clearance
221(3)
3.3. Absolute Oral Bioavailability versus Systemic Exposure
224(1)
4. Life in the Real World
225(4)
4.1. Selection of a Viable Chemical Template
225(2)
4.2. Identification of a Final Clinical Candidate
227(2)
References
229(4)
Chapter 11 The Integration of Medicinal Chemistry, Drug Metabolism, and Pharmaceutical Research and Development in Drug Discovery and Development: The Story of Crixivan(R), an HIV Protease Inhibitor
233(24)
Jiunn H. Lin
Drazen Ostovic
Joseph P. Vacca
1. Introduction
233(1)
2. Discovery of L-735,524 (Crixivan(R))
234(4)
3. Improvement of Solubility
238(3)
4. Physicochemical Properties of MK-639 (Indinavir)
241(5)
5. pH-Dependent Oral Absorption
246(2)
6. In Vitro/In Vivo Metabolism
248(1)
7. Backup Compounds
249(3)
8. Conclusion
252(2)
References
254(3)
Chapter 12 De Novo Design and Discovery of Cyclic HIV Protease Inhibitors Capable of Displacing the Active-Site Structural Water Molecule
257(28)
George V. De Lucca
Prabhakar K. Jadhav
Robert E. Waltermire
Bruce J. Aungst
Susan Erickson-Viitanen
Patrick Y.S. Lam
1. Introduction
257(1)
2. Initiation of Program at DMPC
258(1)
3. Design of Cyclic Ureas
259(7)
3.1. De Novo Design
259(3)
3.2. Confirmation of Design
262(3)
3.3. Molecular Recognition
265(1)
4. First Clinical Candidate DMP 323
266(4)
4.1. Discovery and Optimization
266(1)
4.2. Chemistry and Process Development
267(3)
4.3. Clinical Study
270(1)
5. Second Clinical Candidate DMP 450
270(4)
5.1. Discovery and Optimization
270(1)
5.2. Safety and Pharmacokinetics
271(1)
5.3. Chemistry and Process Development
272(1)
5.4. Clinical Study
273(1)
6. Future Cyclic Ureas
274(6)
6.1. Potency
275(1)
6.2. Resistance Profile
276(2)
6.3. Pharmacokinetics
278(2)
6.4. Design and Physicochemical Properties
280(1)
7. Conclusion
280(1)
References
281(4)
Chapter 13 Discovery and Development of the BHAP Nonnucleoside Reverse Transcriptase Inhibitor Delavirdine Mesylate
285(28)
Wade J. Adams
Paul A. Aristoff
Richard K. Jensen
Walter Morozowich
Donna L. Romero
William C. Schinzer
W. Gary Tarpley
Richard C. Thomas
1. Introduction, Goals, and Strategy
285(2)
2. Discovery of Initial Lead (PNU-80493E)
287(1)
3. Selection of First-Generation Candidate (PNU-87201)
288(4)
4. Development of PNU-87201E (Atevirdine Mesylate)
292(1)
5. Goals for Second-Generation Candidate
292(1)
6. Selection Process
293(1)
7. Water-Soluble Compounds
294(6)
8. Development of PNU-90152T (Delavirdine Mesylate)
300(10)
8.1. Pharmacology
300(1)
8.2. Formulation/Salt Selection/Crystal Form
301(4)
8.3. Absorption, Distribution, Metabolism, and Excretion
305(3)
8.4. Safety/Toxicokinetics
308(1)
8.5 Clinical Summary
309(1)
9. Conclusions
310(1)
References
310(3)
Chapter 14 Famciclovir: Discovery and Development of a Novel Antiherpesvirus Agent
313(32)
Richard L. Jarvest
David Sutton
R. Anthony Vere Hodge
1. Introduction
313(8)
1.1. Identification of Penciclovir as an Antiherpesvirus Agent
314(1)
1.2. Antiviral Activity and Spectrum of Activity
315(1)
1.3. Mechanism of Action
316(5)
1.4. Oral Bioavailability
321(1)
2. Prodrug Forms of Penciclovir
321(8)
2.1. Strategy and Evaluation of Oral Bioavailability
321(5)
2.2. Evaluation of Metabolic Conversion in Human Body Fluids and Tissues
326(1)
2.3. Selection of Preferred Oral Candidate: Famciclovir
327(1)
2.4. Other Routes of Administration
327(2)
3. Preclinical Evaluation of Famciclovir
329(2)
3.1. Animal Models of Infection
329(1)
3.2. Chirality of Metabolic Products from Famciclovir
330(1)
3.3. Identification of Enzymatic Oxidation in Humans
331(1)
4. Clinical Evaluation
331(6)
4.1. Metabolism and Pharmacokinetics
331(2)
4.2. Efficacy
333(4)
5. Conclusion
337(1)
References
338(7)
Chapter 15 The Use of Esters as Prodrugs for Oral Delivery of Beta-Lactam Antibiotics
345(22)
Linda Mizen
George Burton
1. Introduction
345(2)
2. Chemical Overview
347(3)
3. Animal Bioavailability Studies and Selection
350(7)
3.1. Penicillins, Penems, Trinem
351(2)
3.2. Cephalosporins
353(4)
4. Hydrolysis Rates and Physicochemical Properties
357(4)
4.1. Hydrolysis by Liver
357(1)
4.2. Hydrolysis by Small Intestine
358(1)
4.3. Hydrolysis by Blood
358(2)
4.4. Physicochemical Properties
360(1)
5. Dosing Vehicles and Formulations
361(1)
6. Summary and Conclusions
361(1)
References
362(5)
Chapter 16 Hematoregulators: A Case History of a Novel Hematoregulatory Peptide, SK&F 107647
367(26)
Pradip K. Bhatnagar
William F. Huffman
Andrew G. King
Dagfinn Lovhaug
Louis M. Pelus
William M. Potts
Philip L. Smith
1. Introduction
367(1)
2. Hematopoiesis, Endogenous Regulators, and Host Defense Mechanism
368(1)
3. Unmet Needs
369(2)
4. Nonproteinaceous Hematoregulators
371(4)
4.1. Polymeric Carbohydrate: Betafectin
371(1)
4.2. Low-Molecular-Weight Hematoregulators
371(4)
5. SK&F 107647 and Analogues
375(8)
5.1. Structure-Activity Relationships of SK&F 107647
376(3)
5.2. Mechanism of Action
379(1)
5.3. Colony Stimulating Activity Induction Assay
379(1)
5.4. Hematopoietic Synergistic Factor Assay
379(1)
5.5. Preclinical Studies
380(3)
6. Conclusions
383(1)
References
384(9)
Chapter 17 Discovery and Development of GG745, a Potent Inhibitor of Both Isozymes of 5 Alpha-Reductase
393(30)
Stephen V. Frye
H. Neal Bramson
David J. Hermann
Frank W. Lee
Achintya K. Sinhababu
Gaochao Tian
1. Introduction
393(6)
1.1. 5 Alpha-Reductases
393(4)
1.2. Pathophysiology of DHT
397(1)
1.3. Finasteride: Clinical Effects of a Type 2-Selective 5Alpha-Reductase Inhibitor
398(1)
1.4. Potential Utility of a Dual 5Alpha-Reductase Inhibitor
399(1)
2. Enzymology of 5Alpha-Reductases
399(6)
2.1. Time Dependence of Inhibition by Delta(1) 4-Azasteroids
399(5)
2.2. Modeling of the Clinical Effect of Finasteride
404(1)
3. Discovery of Dual 5Alpha-Reductase Inhibitors: 6-Azasteroids
405(5)
3.1. Medicinal Chemistry
405(3)
3.2. Pharmacokinetic Studies: In Vivo and in Vitro Correlations
408(2)
4. Discovery of GG745
410(3)
5. Initial Clinical Studies with GG745
413(4)
5.1. Interspecies Scaling/Dose Selection
413(1)
5.2. Pharmacokinetic and Pharmacodynamic Results in Man
414(3)
References
417(6)
Chapter 18 Discovery of a Potent and Selective Alpha(1A) Antagonist: Utilization of a Rapid Screening Method to Obtain Pharmacokinetic Parameters
423(22)
Kimberly K. Adkison
Kathy A. Halm
Joel E. Shaffer
David Drewry
Achintya K. Sinhababu
Judd Berman
1. Introduction
423(2)
1.1. Benign Prostatic Hyperplasia
423(1)
1.2. Therapeutic Use of Alpha(1A)-Selective Antagonists
424(1)
1.3. Project Goal
425(1)
2. Research Strategy
425(8)
2.1. Compound Progression and Critical Path
425(1)
2.2. Discovery of Alpha(1A)-Selective Oxazole-Containing Antagonists
426(7)
3. Pharmacokinetic/Pharmacodynamic Strategy
433(9)
3.1. In Vitro Metabolism Screening Prior to Pharmacokinetic Studies
433(1)
3.2. Improved Pharmacokinetic Throughput: Mixture Dosing Coupled with LC/MS Analysis
434(5)
3.3. Pharmacokinetic Evaluation of Other Leads
439(1)
3.4. Pharmacodynamics of the Lead Compound
440(2)
4. Advancement of Compound 18 to Exploratory Development
442(1)
References
442(3)
Chapter 19 Discovery of Bioavailable Inhibitors of Secretory Phospholipase A(2)
445(20)
Steven G. Blanchard
Robert C. Andrews
Peter J. Brown
Liang-Shang L. Gan
Frank W. Lee
Achintya K. Sinhababu
Thomas N. Wheeler
1. Introduction
445(1)
1.1. Therapeutic Target
445(1)
1.2. Program Objective
446(1)
2. In Vitro Identification of Active-Site Inhibitors of sPLA(2)
446(2)
2.1. "Dual Substrate" Strategy for Inhibitor Discovery
446(1)
2.2. In Vitro Profile of Substrate Analogue PLA(2) Inhibitors
447(1)
3. In Vivo Anti-inflammatory Activity of Initial Candidates
448(4)
3.1. Choice of Animal Model
448(1)
3.2. In Vivo Activity Is Dependent on Formulation of the Test Compound
449(1)
3.3. Activity in the Rat Carrageenan Paw Edema Model
450(2)
4. Pharmacokinetic and Metabolic Fate of Candidate Inhibitors
452(6)
4.1. Plasma Levels and Metabolic Profiles after i.v. and p.o. Dosing
452(1)
4.2. In Vitro Studies
453(4)
4.3. Conclusions Based on Metabolism Studies
457(1)
5. Preparation of Inhibitors Designed to Address the Observed Metabolic Instability
458(3)
5.1. Synthesis and in Vitro Evaluation of Inhibitory Activity
458(2)
5.2. Evaluation of in Vitro Stability
460(1)
5.3. Pharmacokinetic Studies
460(1)
5.4. In Vivo Activity of Inhibitors with Improved Metabolism and Pharmacokinetics
460(1)
6. Summary and Conclusions
461(1)
References
462(3)
Chapter 20 The Anxieties of Drug Discovery and Development: CCK-B Receptor Antagonists
465(16)
Franco Lombardo
Steven M. Winter
Larry Tremaine
John A. Lowe III
1. Introduction
465(1)
2. Chemistry
466(2)
3. Initial Drug Metabolism Studies
468(3)
4. Formulation Studies
471(5)
5. A New Analogue with Improved Aqueous Solubility: CP-310, 713
476(1)
6. Lessons Learned
477(1)
References
478(3)
Chapter 21 CI-1015: An Orally Active CCK-B Receptor Antagonist with an Improved Pharmacokinetic Profile
481(26)
Bharat K. Trivedi
Joanna P. Hinton
1. Introduction
481(7)
1.1. First-Generation CCK-B Antagonists
482(1)
1.2. CI-988 Pharmacokinetic Retrospective
483(5)
1.3. Objectives of the Discovery Team
488(1)
2. Discovery of CI-1015
488(6)
2.1. Design Strategy
488(1)
2.2. Structure-Activity Relationship Study
488(6)
3. Preclinical Characterization of Backup Candidates
494(6)
3.1. In Vitro and in Vivo Comparison
494(1)
3.2. Pharmacokinetic Evaluations in Rat
494(4)
3.3. Brain Penetration Studies
498(1)
3.4. Evaluation of Potential for Gastric Acid Secretion
499(1)
3.5. Pharmacokinetic Evaluation in Monkey
500(1)
4. Conclusion
500(3)
References
503(4)
Chapter 22 Orally Active Nonpeptide CCK-A Agonists
507(18)
Elizabeth E. Sugg
Lawrence Birkemo
Liang-Shang L. Gan
Timothy K. Tippin
1. Introduction
507(1)
2. In Vivo Profile of GW7854
508(2)
3. Pharmaceutical Studies with GW7854
510(1)
3.1. Batch Variation
510(1)
3.2. Dosing Vehicle
510(1)
4. Pharmacology Studies
510(1)
4.1. The Mouse Gallbladder Emptying Assay
510(1)
4.2. Alternate Species
511(1)
4.3. The Conditioned Feeder Rat Model
511(1)
5. Pharmacokinetic Profile of GW7854
511(1)
6. The Caco-2 Model for Intestinal Absorption
512(4)
6.1. Correlation with Rat Intestinal Absorption
513(1)
6.2. Structure-Transport Relationships
513(3)
7. Bioavailability versus Bioactivity
516(5)
8. Oral versus Intraduodenal Dosing
521(1)
9. Discussion
521(1)
10. Clinical Implications
522(1)
References
522(3)
Chapter 23 Orally Active Growth Hormone Secretagogues
525(30)
Arthur A. Patchett
Roy G. Smith
Matthew J. Wyvratt
1. Introduction
525(2)
2. Discovery of GHRP-6 Mimics: Benzolactam L-692, 429
527(7)
2.1. Clinical Studies with L-692, 429
528(1)
2.2. Structure-Activity-Bioavailability Relationships for the Benzolactams
529(5)
3. New Structural Leads
534(10)
3.1. Privileged Structure Screening
534(2)
3.2. Discovery of MK-0677
536(8)
4. Mechanism of Action of GH Secretagogues
544(3)
4.1. Biochemistry
544(1)
4.2. Characterization of the GH Secretagogue Receptor (GHS-R)
545(1)
4.3. Cloning the GH Secretagogue Receptor
546(1)
4.4. GH Secretagogue Receptor and GH Pulsatility
546(1)
5. Conclusion
547(2)
References
549(6)
Chapter 24 Dorzolamide, a 40-Year Wait: From an Oral to a Topical Carbonic Anhydrase Inhibitor for the Treatment of Glaucoma
555(20)
Gerald S. Ponticello
Michael F. Sugrue
Bernard Plazonnet
Genevieve Durand-Cavagna
1. Introduction
555(2)
2. Benzothiazoles
557(1)
3. Benzothiophenes
558(1)
4. Thienothiopyrans
559(1)
5. Dorzolamide
560(3)
6. Pharmacology
563(3)
6.1. In Vitro
563(1)
6.2. In Vivo
564(2)
7. Pharmaceutical Research and Development Studies
566(1)
8. Safety Assessment Studies
567(4)
9. Summary
571(1)
References
572(3)
Chapter 25 Discovery and Development of Novel Melanogenic Drugs: Melanotan-I and -II
575(22)
Mac E. Hadley
Victor J. Hruby
James Blanchard
Robert T. Dorr
Norman Levine
Brenda V. Dawson
Fahad Al-Obeidi
Tomi K. Sawyer
1. Introduction
575(1)
2. The Melanocortin Peptides and Receptors
576(3)
2.1. Melanocortin Peptides
576(1)
2.2. Melanocortin Receptors
577(2)
3. Discovery of the MT-I and MT-II as MSH Superagonists
579(4)
3.1. Structure-Activity Studies of Alpha-MSH
579(1)
3.2. Design and Chemistry of MT-I and MT-II
580(2)
3.3 In Vitro and in Vivo Pharmacology of MT-I and MT-II
582(1)
4. Development of MT-I and MT-II as Novel Melanogenic Drugs
583(7)
4.1. Stability, Pharmacokinetic, and Toxicological Studies
583(2)
4.2. Drug Delivery and Clinical Studies
585(5)
5. Summary and Future Directions
590(1)
References
591(6)
Index 597

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Rewards Program