rent-now

Rent More, Save More! Use code: ECRENTAL

5% off 1 book, 7% off 2 books, 10% off 3+ books

9780201400090

An Introduction to the Analysis of Algorithms

by ;
  • ISBN13:

    9780201400090

  • ISBN10:

    020140009X

  • Edition: 1st
  • Format: Paperback
  • Copyright: 1995-11-30
  • Publisher: Addison-Wesley Professional
  • View Upgraded Edition
  • Purchase Benefits
  • Free Shipping Icon Free Shipping On Orders Over $35!
    Your order must be $35 or more to qualify for free economy shipping. Bulk sales, PO's, Marketplace items, eBooks and apparel do not qualify for this offer.
  • eCampus.com Logo Get Rewarded for Ordering Your Textbooks! Enroll Now
List Price: $64.99

Summary

This book is intended to be a thorough overview of the primary techniques used in the mathematical analysis of algorithms. The material covered draws from classical mathematical topics, including discrete mathematics, elementary real analysis, and combinatorics; as well as from classical computer science topics, including algorithms and data structures. The focus is on "average-case'' or "probabilistic'' analysis, though the basic mathematical tools required for "worst-case" or "complexity" analysis are covered, as well.

It is assumed that the reader has some familiarity with basic concepts in both computer science and real analysis. In a nutshell, the reader should be able to both write programs and prove theorems; otherwise, the book is intended to be self-contained. Ample references to preparatory material in the literature are also provided. A planned companion volume will cover more advanced techniques. Together, the books are intended to cover the main techniques and to provide access to the growing research literature on the analysis of algorithms.

The book is meant to be used as a textbook in a junior- or senior-level course on "Mathematical Analysis of Algorithms.'' It might also be useful in a course in discrete mathematics for computer scientists, since it covers basic techniques in discrete mathematics as well as combinatorics and basic properties of important discrete structures within a familiar context for computer science students. It is traditional to have somewhat broader coverage in such courses, but many instructors may find the approach here a useful way to engage students in a substantial portion of the material. The book also can be used to introduce students in mathematics and applied mathematics to principles from computer science related to algorithms and data structures.

Supplemented by papers from the literature, the book can serve as the basis for an introductory graduate course on the analysis of algorithms, or as a reference or basis for self-study by researchers in mathematics or computer science who want access to the literature in this field. It also might be of use to students and researchers in combinatorics and discrete mathematics, as a source of applications and techniques.

Despite the large literature on the mathematical analysis of algorithms, basic information on methods and models in widespread use has not been directly accessible to students and researchers in the field. This book aims to address this situation, bringing together a body of material intended to provide the reader with both an appreciation for the challenges of the field and the requisite background for learning the advanced tools being developed to meet these challenges.

Preparation

Mathematical maturity equivalent to one or two years' study at the college level is assumed. Basic courses in combinatorics and discrete mathematics may provide useful background (and may overlap with some material in the book), as would courses in real analysis, numerical methods, or elementary number theory. We draw on all of these areas, but summarize the necessary material here, with reference to standard texts for people who want more information.

Programming experience equivalent to one or two semesters' study at the college level, including elementary data structures, is assumed. We do not dwell on programming and implementation issues, but algorithms and data structures are the central object of our studies. Again, our treatment is complete in the sense that we summarize basic information, with reference to standard texts and primary sources.

Access to a computer system for mathematical manipulation such as MAPLE or Mathematica is highly recommended. These systems can relieve one from tedious calculations, when checking material in the text or solving exercises.

Related books

Related texts include "The Art of Computer Programming" by Knuth; "Handbook of Algorithms and Data Structure" by Gonnet and Baeza-Yates; "Algorithms"by Sedgewick; "Concrete Mathematics" by Graham, Knuth and Patashnik; and "Introduction to Algorithms" by Cormen, Leiserson, and Rivest. This book could be considered supplementary to each of these, as examined below, in turn.

In spirit, this book is closest to the pioneering books by Knuth, but our focus is on mathematical techniques of analysis, where those books are broad and encyclopaedic in scope with properties of algorithms playing a primary role and methods of analysis a secondary role. This book can serve as basic preparation for the advanced results covered and referred to in Knuth's books.

We also cover approaches and results in the analysis of algorithms that have been developed sincepublication of Knuth's books. The book by Gonnet and Baeza-Yates is a thorough survey of such results, including a comprehensive bibliography. That book primarily presents results with reference to derivations in the literature. Again, this book provides the basic preparation for access to this literature.

We also strive to keep the focus on covering algorithms of fundamental importance and interest, such as those described in Sedgewick, where Graham, Knuth, and Patashnik focus almost entirely on mathematical techniques. This book is intended to bea link between the basic mathematical techniques discussed in Knuth, Graham, and Patashnik and the basic algorithms covered in Sedgewick.

The book by Cormen, Leiserson, and Rivest is representative of a number of books that provide access to the research literature on "design and analysis'' of algorithms, which is normally based on rough worst-case estimates of performance. When more precise results are desired (presumably for the most important methods), more sophisticated models and mathematical tools are required. This book is supplementary to books like Cormen, Leiserson and Rivest in that they focus on design of algorithms (usually with the goal of bounding worst-case performance), with analytic results used to help guide the design, where we focus on the analysis of algorithms, especially on techniques that can be used to develop detailed results that could be used to predict performance. In this process, we also consider relationships to various classical mathematical tools. Chapter 1 is devoted entirely to developing this context.

This book also lays the groundwork for a companion volume, "Analytic Combinatorics", a general treatment that places the material in this book into a broader perspective and develops advanced methods and models that can serveas the basis for new research, not only in average-case analysis of algorithms, but also in combinatorics. A higher level of mathematical maturity is assumed for that volume, perhaps at the senior or beginning graduate student level. Of course, careful study of this book is adequate preparation. It certainly has been our goal to make the present volume sufficiently interesting that some readers will be inspired to tackle more advanced material!

How to use this book

Readers of this book are likely to have rather diverse backgrounds in discrete mathematics and computer science. With this in mind, it is useful to be aware the basic structure of book: There are eight chapters, an introduction followed by three chapters that emphasize mathematical methods, then four chapters that emphasize applications in the analysis of algorithms, as shown in the following outline:

Introduction
Analysis of Algorithms
Discrete Mathematical Methods
Recurrences
Generating Functions
Asymptotic Analysis
Algorithms and Combinatorial Stru

Author Biography

Robert Sedgewick is the William O. Baker Professor of Computer Science at Princeton University.

Table of Contents

Analysis of Algorithms
Why Analyze an Algorithm? Computational Complexity
Analysis of Algorithms
Average-Case Analysis
Example: Analysis of Quicksort
Asymptotic Approximations
Distributions
Probabilistic Algorithms
Recurrence Relations
Basic Properties
First-Order Recurrences
Nonlinear First-Order Recurrences
Higher-Order Recurrences
Methods for Solving Recurrences
Binary Divide-and-Conquer Recurrences and Binary Numbers
General Divide-and-Conquer Recurrences
Generating Functions
Ordinary Generating Functions
Exponential Generating Functions
Generating Function Solution of Recurrences
Expanding Generating Functions
Transformations with Generating Functions
Functional Equations on Generating Functions
Solving the Quicksort Median-of-Three
Recurrence with OGFs
Counting with Generating Functions
The Symbolic Method
Lagrange Inversion
Probability Generating Functions
Bivariate Generating Functions
Special Functions
Asymptotic Approximations
Notation for Asymptotic Approximations
Asymptotic Expansions
Manipulating Asymptotic Expansions
Asymptotic Approximations of Finite Sums
Euler-Maclaurin Summation
Bivariate Asymptotics
Laplace Method
“Normal” Examples from the Analysis of Algorithms
“Poisson” Examples from the Analysis of Algorithms
Generating Function Asymptotics
Trees
Binary Trees
Trees and Forests
Properties of Trees
Tree Algorithms
Binary Search Trees
Average Path Length in Catalan Trees
Path Length in Binary Search Trees
Additive Parameters of Random Trees
Height
Summary of Average-Case Results on Properties of Trees
Representations of Trees and Binary Trees
Unordered Trees
Labelled Trees
Other Types of Trees
Permutations
Basic Properties of Permutations
Algorithms on Permutations
Representations of Permutations
Enumeration Problems
Analyzing Properties of Permutations with CGFs
Inversions and Insertion Sorts
Left-to-Right Minima and Selection Sort
Cycles and In Situ Permutation
Extremal Parameters
Strings and Tries
String Searching
Combinatorial Properties of Bitstrings
Regular Expressions
Finite-State Automata and Knuth-Morris-Pratt Algorithm
Context-Free Grammars
Tries
Trie Algorithms
Combinatorial Properties of Tries
Larger alphabets
Words and Maps
Hashing with Separate Chaining
Basic Properties of Words
Birthday Paradox and Coupon Collector Problem
Occupancy Restrictions and Extremal Parameters
Occupancy Distributions
Open Addressing Hashing
Maps
Integer Factorization and Maps
020140009XT04062001
Table of Contents provided by Publisher. All Rights Reserved.

Supplemental Materials

What is included with this book?

The New copy of this book will include any supplemental materials advertised. Please check the title of the book to determine if it should include any access cards, study guides, lab manuals, CDs, etc.

The Used, Rental and eBook copies of this book are not guaranteed to include any supplemental materials. Typically, only the book itself is included. This is true even if the title states it includes any access cards, study guides, lab manuals, CDs, etc.

Excerpts

This book is intended to be a thorough overview of the primary techniques used in the mathematical analysis of algorithms. The material covered draws from classical mathematical topics, including discrete mathematics, elementary real analysis, and combinatorics; as well as from classical computer science topics, including algorithms and data structures. The focus is on "average-case'' or "probabilistic'' analysis, though the basic mathematical tools required for "worst-case" or "complexity" analysis are covered, as well.It is assumed that the reader has some familiarity with basic concepts in both computer science and real analysis. In a nutshell, the reader should be able to both write programs and prove theorems; otherwise, the book is intended to be self-contained. Ample references to preparatory material in the literature are also provided. A planned companion volume will cover more advanced techniques. Together, the books are intended to cover the main techniques and to provide access to the growing research literature on the analysis of algorithms.The book is meant to be used as a textbook in a junior- or senior-level course on "Mathematical Analysis of Algorithms.'' It might also be useful in a course in discrete mathematics for computer scientists, since it covers basic techniques in discrete mathematics as well as combinatorics and basic properties of important discrete structures within a familiar context for computer science students. It is traditional to have somewhat broader coverage in such courses, but many instructors may find the approach here a useful way to engage students in a substantial portion of the material. The book also can be used to introduce students in mathematics and applied mathematics to principles from computer science related to algorithms and data structures.Supplemented by papers from the literature, the book can serve as the basis for an introductory graduate course on the analysis of algorithms, or as a reference or basis for self-study by researchers in mathematics or computer science who want access to the literature in this field. It also might be of use to students and researchers in combinatorics and discrete mathematics, as a source of applications and techniques.Despite the large literature on the mathematical analysis of algorithms, basic information on methods and models in widespread use has not been directly accessible to students and researchers in the field. This book aims to address this situation, bringing together a body of material intended to provide the reader with both an appreciation for the challenges of the field and the requisite background for learning the advanced tools being developed to meet these challenges. PreparationMathematical maturity equivalent to one or two years' study at the college level is assumed. Basic courses in combinatorics and discrete mathematics may provide useful background (and may overlap with some material in the book), as would courses in real analysis, numerical methods, or elementary number theory. We draw on all of these areas, but summarize the necessary material here, with reference to standard texts for people who want more information.Programming experience equivalent to one or two semesters' study at the college level, including elementary data structures, is assumed. We do not dwell on programming and implementation issues, but algorithms and data structures are the central object of our studies. Again, our treatment is complete in the sense that we summarize basic information, with reference to standard texts and primary sources.Access to a computer system for mathematical manipulation such as MAPLE or Mathematica is highly recommended. These systems can relieve one from tedious calculations, when checking material in the text or solving exercises. Related booksRelated texts include

Rewards Program